CONVERGENCE OF THE CONJUGATE GRADIENT METHOD WITH UNBOUNDED OPERATORS

被引:4
|
作者
Caruso, Noe [1 ,2 ]
Michelangeli, Alessandro [3 ,4 ]
机构
[1] Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Gran Sasso Sci Inst GSSI, Viale Francesco Crispi 7, I-67100 Laquila, Italy
[3] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
[4] Univ Bonn, Hausdorff Ctr Math, Endenicher Allee 60, D-53115 Bonn, Germany
来源
OPERATORS AND MATRICES | 2022年 / 16卷 / 01期
关键词
Inverse linear problems; infinite-dimensional Hilbert space; ill-posed prob-lems; Krylov subspaces methods; conjugate gradient; self-adjoint operators; spectral measure; orthogonal polynomials; KRYLOV SUBSPACE METHODS; ILL-POSED PROBLEMS; ITERATIVE METHODS;
D O I
10.7153/oam-2022-16-05
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the framework of inverse linear problems on infinite-dimensional Hilbert space, we prove the convergence of the conjugate gradient iterates to an exact solution to the inverse problem in the most general case where the self-adjoint, non-negative operator is unbounded and with minimal, technically unavoidable assumptions on the initial guess of the iterative algorithm. The convergence is proved to always hold in the Hilbert space norm (error convergence), as well as at other levels of regularity (energy norm, residual, etc.) depending on the regularity of the iterates. We also discuss, both analytically and through a selection of numerical tests, the main features and differences of our convergence result as compared to the case, already available in the literature, where the operator is bounded.
引用
收藏
页码:35 / 68
页数:34
相关论文
共 50 条
  • [1] On the rate of convergence of the conjugate gradient method for linear operators in Hilbert space
    Axelsson, O
    Karátson, J
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2002, 23 (3-4) : 285 - 302
  • [2] Global convergence of conjugate gradient method
    Shi, Zhen-Jun
    Guo, Jinhua
    OPTIMIZATION, 2009, 58 (02) : 163 - 179
  • [3] LINEAR CONVERGENCE OF CONJUGATE GRADIENT METHOD
    CROWDER, H
    WOLFE, P
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1972, 16 (04) : 431 - &
  • [4] The Global Convergence Properties of a Conjugate Gradient Method
    Omer, Osman
    Mamat, Mustafa
    Abashar, Abdelrhaman
    Rivaie, Mohd
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES, 2014, 1602 : 286 - 295
  • [5] GLOBAL CONVERGENCE OF A MODIFIED CONJUGATE GRADIENT METHOD
    Li, Can
    Fang, Ling
    Lu, Peng
    2012 INTERNATIONAL CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (LCWAMTIP), 2012, : 78 - 81
  • [6] ON CONVERGENCE OF CONJUGATE GRADIENT METHOD IN HILBERT SPACE
    KAWAMURA, K
    VOLZ, RA
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1969, AC14 (03) : 296 - +
  • [7] SOME CONVERGENCE PROPERTIES OF CONJUGATE GRADIENT METHOD
    POWELL, MJD
    MATHEMATICAL PROGRAMMING, 1976, 11 (01) : 42 - 49
  • [8] New results on the convergence of the conjugate gradient method
    Bouyouli, R.
    Meurant, G.
    Smoch, L.
    Sadok, H.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (03) : 223 - 236
  • [9] Global Convergence of a Nonlinear Conjugate Gradient Method
    Liu Jin-kui
    Zou Li-min
    Song Xiao-qian
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011
  • [10] Global convergence of a modified conjugate gradient method
    Xuesha Wu
    Journal of Inequalities and Applications, 2014