Face Recognition Using Nonlinear Feature Parameter and Artificial Neural Network

被引:6
|
作者
Narayanan, N. K. [1 ]
Kabeer, V. [1 ]
机构
[1] Kannur Univ, Sch Informat Sci & Technol, Kannur 670567, Kerala, India
关键词
Face recognition; Feature extraction; State space parameters; Fractal dimension; Artificial Neural Network; Pattern Classification;
D O I
10.1080/18756891.2010.9727723
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper reports a study of nonlinear nature of face image. A novel feature extraction method using state space feature parameter for the recognition of face images is studied. The results of simulation experiments performed on the standard AT & T face database using both Artificial Neural Network and K-Nearest Neighbour recognition algorithms based on Nonlinear Feature Parameter (NLFP) is also presented. Overall recognition accuracy obtained is better for ANN algorithm and is 98.5%.
引用
收藏
页码:566 / 574
页数:9
相关论文
共 50 条
  • [41] Face Recognition Using Cloud Hopfield Neural Network
    Soni, Neha
    Singh, Narotam
    Kapoor, Amita
    Sharma, Enakshi Khular
    PROCEEDINGS OF THE 2016 IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2016, : 416 - 419
  • [42] Feature extraction of video using artificial neural network
    Hayakawa Y.
    Oonuma T.
    Kobayashi H.
    Takahashi A.
    Chiba S.
    Fujiki N.M.
    International Journal of Cognitive Informatics and Natural Intelligence, 2017, 11 (02) : 25 - 40
  • [43] Face Detection with Expression Recognition using Artificial Neural Networks
    Owayjan, Michel
    Achkar, Roger
    Iskandar, Moussa
    2016 3RD MIDDLE EAST CONFERENCE ON BIOMEDICAL ENGINEERING (MECBME), 2016, : 115 - 119
  • [44] Face recognition system using artificial neural networks approach
    Nazeer, Shahrin Azuan
    Omar, Nazaruddin
    Khalid, Marzuki
    2007 INTERNATIONAL CONFERENCE OF SIGNAL PROCESSING, COMMUNICATIONS AND NETWORKING, VOLS 1 AND 2, 2006, : 420 - +
  • [45] Artificial Neural Networks for Face Recognition using PCA and BPNN
    Kumar, Rajath M. P.
    Sravan, Keerthi R.
    Aishwarya, K. M.
    TENCON 2015 - 2015 IEEE REGION 10 CONFERENCE, 2015,
  • [46] An artificial neural network approach to identify the parameter in a nonlinear subdiffusion model
    Oulmelk, A.
    Srati, M.
    Afraites, L.
    Hadri, A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 125
  • [47] Feature Extraction using Wavelet-PCA and Neural network for application of Object Classification & Face Recognition
    Chitaliya, N. G.
    Trivedi, A. I.
    2010 SECOND INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATIONS: ICCEA 2010, PROCEEDINGS, VOL 1, 2010, : 510 - 514
  • [48] Parameter Estimation for Open Clusters using an Artificial Neural Network with a QuadTree-based Feature Extractor
    Cavallo, Lorenzo
    Spina, Lorenzo
    Carraro, Giovanni
    Magrini, Laura
    Poggio, Eloisa
    Cantat-Gaudin, Tristan
    Pasquato, Mario
    Lucatello, Sara
    Ortolani, Sergio
    Schiappacasse-Ulloa, Jose
    ASTRONOMICAL JOURNAL, 2024, 167 (01):
  • [49] Face Recognition based on Convolution Neural Network and Scale Invariant Feature Transform
    Alamri, Jamilah
    Harrabi, Rafika
    Ben Chaabane, Slim
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (02) : 644 - 654
  • [50] Feature extraction based ondeep-convolutional neural network for face recognition
    Li, Xiaolin
    Niu, Haitao
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (22): : 1