An Arabic Question-Answering system for factoid questions

被引:0
|
作者
Brini, Wissal [1 ]
Ellouze, Mariem [1 ]
Mesfar, Slim [2 ]
Belguith, Lamia Hadrich [1 ]
机构
[1] FSEGS Univ Sfax, LARIS MIRACL, Sfax, Tunisia
[2] Univ El Manar, ISI, Tunis, Tunisia
关键词
Arabic language; fadoid questions; Natural language processing; Question-Answering system;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an Arabic Question-Answering (Q-A) system called QASAL "Question -Answering system for Arabic Language". QASAL accepts as an input a natural language question written in Modern Standard Arabic (MSA) and generates as an output the most efficient and appropriate answer. The proposed system is composed of three modules: A question analysis module, a passage retrieval module and an answer extraction module. To process these three modules we use the NooJ Platform which represents a linguistic development environment.
引用
收藏
页码:417 / +
页数:3
相关论文
共 50 条
  • [21] A question-answering system using argumentation
    Moreale, E
    Vargas-Vera, M
    MICAI 2004: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2004, 2972 : 400 - 409
  • [22] A systematic review of question answering systems for non-factoid questions
    Cortes, Eduardo Gabriel
    Woloszyn, Vinicius
    Barone, Dante
    Moeller, Sebastian
    Vieira, Renata
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2022, 58 (03) : 453 - 480
  • [23] Wedding Dress Question-Answering System
    Liu, Yiwei
    Zhang, Yizhuo
    Wei, Yu-Chih
    Chen, Chi-Hua
    2020 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TAIWAN), 2020,
  • [24] An analysis of the AskMSR question-answering system
    Brill, E
    Dumais, S
    Banko, N
    PROCEEDINGS OF THE 2002 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, 2002, : 257 - 264
  • [25] Question-answering system for combustion kinetics
    Pascazio, Laura
    Tran, Dan
    Rihm, Simon D.
    Bai, Jiaru
    Mosbach, Sebastian
    Akroyd, Jethro
    Kraft, Markus
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2024, 40 (1-4)
  • [26] Question-Answering System with Linguistic Summarization
    To, Nhuan D.
    Reformat, Marek Z.
    Yager, Ronald R.
    IEEE CIS INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS 2021 (FUZZ-IEEE), 2021,
  • [27] RAPPORT - A Portuguese Question-Answering System
    Rodrigues, Ricardo
    Gomes, Paulo
    PROGRESS IN ARTIFICIAL INTELLIGENCE-BK, 2015, 9273 : 771 - 782
  • [28] The Research and Design of Question-Answering System
    Song, Bo
    Zhuo, Yue
    FUZZY SYSTEMS AND DATA MINING III (FSDM 2017), 2017, 299 : 231 - 237
  • [29] A Study of Deep Learning for Factoid Question Answering System
    Day, Min-Yuh
    Kuo, Yu-Ling
    2020 IEEE 21ST INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2020), 2020, : 419 - 424
  • [30] Multi-Label Question Classification for Factoid and List Type Questions in Biomedical Question Answering
    Wasim, Muhammad
    Mahmood, Waqar
    Asim, Muhammad Nabeel
    Ghani, Muhammad Usman
    IEEE ACCESS, 2019, 7 : 3882 - 3896