Multiscale Superpixel-Level Subspace-Based Support Vector Machines for Hyperspectral Image Classification

被引:80
|
作者
Yu, Haoyang [1 ,2 ]
Gao, Lianru [3 ]
Liao, Wenzhi [4 ]
Zhang, Bing [1 ,2 ]
Pizurica, Aleksandra [4 ]
Philips, Wilfried [4 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[4] Univ Ghent, TELIN, IMEC, Dept Telecommun & Informat Proc, B-9000 Ghent, Belgium
基金
中国国家自然科学基金;
关键词
Hyperspectral image classification; multiscale superpixel segmentation; subspace projection; support vector machines (SVM); SPECTRAL-SPATIAL CLASSIFICATION;
D O I
10.1109/LGRS.2017.2755061
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter introduces a new spectral-spatial classification method for hyperspectral images. A multiscale superpixel segmentation is first used to model the distribution of classes based on spatial information. In this context, the original hyperspectral image is integrated with segmentation maps via a feature fusion process in different scales such that the pixel-level data can be represented by multiscale superpixel-level (MSP) data sets. Then, a subspace-based support vector machine (SVMsub) is adopted to obtain the classification maps with multiscale inputs. Finally, the classification result is achieved via a decision fusion process. The resulting method, called MSP-SVMsub, makes use of the spatial and spectral coherences, and contributes to better feature characterization. Experimental results based on two real hyperspectral data sets indicate that the MSP-SVMsub exhibits good performance compared with other related methods.
引用
收藏
页码:2142 / 2146
页数:5
相关论文
共 50 条
  • [11] SUPERPIXEL-LEVEL SPARSE REPRESENTATION-BASED CLASSIFICATION FOR HYPERSPECTRAL IMAGERY
    Jia, Sen
    Deng, Bin
    Jia, Xiuping
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3302 - 3305
  • [12] Adaptive Pixel-Level and Superpixel-Level Feature Fusion Transformer for Hyperspectral Image Classification
    Huang, Wei
    Zhou, Dazhan
    Sun, Le
    Chen, Qiqiang
    Yin, Junru
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 16876 - 16889
  • [13] A Multiscale Superpixel-Level Group Clustering Framework for Hyperspectral Band Selection
    Jia, Sen
    Yuan, Yue
    Li, Nanying
    Liao, Jianhui
    Huang, Qiang
    Jia, Xiuping
    Xu, Meng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [14] A Subspace-Based Multinomial Logistic Regression for Hyperspectral Image Classification
    Khodadadzadeh, Mahdi
    Li, Jun
    Plaza, Antonio
    Bioucas-Dias, Jose M.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (12) : 2105 - 2109
  • [15] Multiscale Pixel-Level and Superpixel-Level Method for Hyperspectral Image Classification: Adaptive Attention and Parallel Multi-Hop Graph Convolution
    Yin, Junru
    Liu, Xuan
    Hou, Ruixia
    Chen, Qiqiang
    Huang, Wei
    Li, Aiguang
    Wang, Peng
    REMOTE SENSING, 2023, 15 (17)
  • [16] DECISION FUSION OF PIXEL-LEVEL AND SUPERPIXEL-LEVEL HYPERSPECTRAL IMAGE CLASSIFIERS
    Lu, Ting
    Li, Shutao
    Fang, Leyuan
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1524 - 1527
  • [17] Superpixel-Level Hybrid Discriminant Analysis for Hyperspectral Image Feature Extraction
    Zhang, Shuzhen
    Lu, Ting
    Fu, Wei
    Li, Shutao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [18] Multiscale Superpixel-Based Active Learning for Hyperspectral Image Classification
    Lu, Qikai
    Wei, Lifei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [19] Multiscale superpixel-based fusion framework for hyperspectral image classification
    Jia, Sen
    Deng, Xianglong
    Wu, Kuilin
    2018 FIFTH INTERNATIONAL WORKSHOP ON EARTH OBSERVATION AND REMOTE SENSING APPLICATIONS (EORSA), 2018, : 448 - 452
  • [20] Multiscale Superpixel-Based Sparse Representation for Hyperspectral Image Classification
    Zhang, Shuzhen
    Li, Shutao
    Fu, Wei
    Fang, Leiyuan
    REMOTE SENSING, 2017, 9 (02)