PREDICTION OF WATER SORPTIVITY IN CEMENT-BASED MATERIALS

被引:0
|
作者
Wang, Li-Cheng [1 ]
机构
[1] Dalian Univ Technol, State Key Lab Coastal & Offshore Engn, Dalian 116024, Peoples R China
关键词
Water absorption; capillarity coefficient; sorptivity; cement-based material; initial water content; numerical simulation; CONCRETE; DIFFUSIVITY; TRANSPORT;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The capillary absorption of water by unsaturated cement-based material is the main cause of degradation of the structures subjecting to an aggressive environment since water often acts as the transporting medium for damaging contaminants. It is well known that the capillarity coefficient and sorptivity are two important parameters to characterize the water absorption of porous materials. Generally, the former is used to describe the penetration depth or height of water transport, which must be measured by special and advanced equipment. In contrast, the sorptivity represents the relationship between cumulative volume of water uptake and the square root of the elapsed time, which can be easily measured by the gravimetric method in a normal laboratory condition. In the current paper, an analytical method is developed to build up a bridge between these two parameters, with the purpose that the sorptivity or the gravimetric method can be used to predict the penetration depth of water absorption. Additionally, a new model to account for the dependence of sorptivity on initial water content of the material is developed in order to fit the in situ condition. Water sorptivity of concrete is also analyzed with help of this model in terms of the mesoscale of concrete. The comparison of predicted results by the analytical method with experimental data or numerical calculation results, as well as some previous models, validates the feasibility of the methods presented in the current paper.
引用
收藏
页码:1042 / 1047
页数:6
相关论文
共 50 条
  • [41] Modelling of water sorption hysteresis of cement-based materials based on pore microstructure
    Li, Liang
    Zuo, Xiao-Bao
    Wang, Cheng
    Cui, Dong
    JOURNAL OF BUILDING ENGINEERING, 2024, 98
  • [42] The pH of Cement-based Materials: A Review
    Yousuf, Sumra
    Shafigh, Payam
    Ibrahim, Zainah
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2020, 35 (05): : 908 - 924
  • [43] Rheology of extruded cement-based materials
    Kuder, Katherine G.
    Shah, Surendra P.
    ACI MATERIALS JOURNAL, 2007, 104 (03) : 283 - 290
  • [44] The pH of Cement-based Materials:A Review
    Sumra Yousuf
    Payam Shafigh
    Zainah Ibrahim
    Journal of Wuhan University of Technology(Materials Science), 2020, 35 (05) : 908 - 924
  • [45] A review of cement-based materials as electroceramics
    Chung, D. D. L.
    Xi, Xiang
    CERAMICS INTERNATIONAL, 2023, 49 (15) : 24621 - 24642
  • [46] Impact of carbonation on unsaturated water transport properties of cement-based materials
    Auroy, Martin
    Poyet, Stephane
    Le Bescop, Patrick
    Torrenti, Jean-Michel
    Charpentier, Thibault
    Moskura, Melanie
    Bourbon, Xavier
    CEMENT AND CONCRETE RESEARCH, 2015, 74 : 44 - 58
  • [47] Pyroelectric behavior of cement-based materials
    Wen, SH
    Chung, DDL
    CEMENT AND CONCRETE RESEARCH, 2003, 33 (10) : 1675 - 1679
  • [48] Modification of cement-based materials with nanoparticles
    Kawashima, Shiho
    Hou, Pengkun
    Corr, David J.
    Shah, Surendra P.
    CEMENT & CONCRETE COMPOSITES, 2013, 36 : 8 - 15
  • [49] Electrically conductive cement-based materials
    Chung, DDL
    ADVANCES IN CEMENT RESEARCH, 2004, 16 (04) : 167 - 176
  • [50] The Effect of Water Repellent Surface Impregnation on Durability of Cement-Based Materials
    Zhang, Peng
    Shang, Huaishuai
    Hou, Dongshuai
    Guo, Siyao
    Zhao, Tiejun
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2017, 2017