CERTAIN COMBINATORIC CONVOLUTION SUMS AND THEIR RELATIONS TO BERNOULLI AND EULER POLYNOMIALS

被引:3
|
作者
Kim, Daeyeoul [1 ]
Bayad, Abdelmejid [2 ]
Ikikardes, Nazli Yildiz [3 ]
机构
[1] Natl Inst Math Sci, Taejon 305811, South Korea
[2] Univ Evry Val dEssonne, Dept Math, F-91037 Evry, France
[3] Balikesir Univ, Necatibey Fac Educ, Dept Elementary Math Educ, TR-10100 Balikesir, Turkey
关键词
Bernoulli polynomials; Euler polynomials; convolution sums; divisor functions; LEGENDRE POLYNOMIALS; CONGRUENCES; THEOREM;
D O I
10.4134/JKMS.2015.52.3.537
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give relationship between Bernoulli-Euler polynomials and convolution sums of divisor functions. First, we establish two explicit formulas for certain combinatoric convolution sums of divisor functions derived from Bernoulli and Euler polynomials. Second, as applications, we show five identities concerning the third and fourth-order convolution sums of divisor functions expressed by their divisor functions and linear combination of Bernoulli or Euler polynomials.
引用
收藏
页码:537 / 565
页数:29
相关论文
共 50 条
  • [31] A CONVOLUTION FORMULA FOR BERNOULLI POLYNOMIALS
    He, Yuan
    Zhang, Wenpeng
    ARS COMBINATORIA, 2013, 108 : 97 - 104
  • [33] Lacunary Recurrence Relations with Gaps of Length 8 for the Bernoulli and Euler Polynomials
    Mirzoev, K. A.
    Safonova, T. A.
    MATHEMATICAL NOTES, 2024, 115 (1-2) : 279 - 284
  • [34] The values of an Euler sum at the negative integers and a relation to a certain convolution of Bernoulli numbers
    Boyadzhiev, Khristo N.
    Gadiyar, H. Copalkrishna
    Padma, R.
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (02) : 277 - 283
  • [35] Lacunary Recurrent Relations with Gaps of Length Four for the Bernoulli and Euler Polynomials
    Mirzoev K.A.
    Safonova T.A.
    Journal of Mathematical Sciences, 2023, 270 (4) : 600 - 608
  • [36] A PRODUCT FORMULA FOR COMBINATORIC CONVOLUTION SUMS OF ODD DIVISOR FUNCTIONS
    Lee, Kwangchul
    Kim, Daeyeoul
    Seo, Gyeong-Sig
    HONAM MATHEMATICAL JOURNAL, 2016, 38 (02): : 243 - 257
  • [37] A note on the Bernoulli and Euler polynomials
    Cheon, GS
    APPLIED MATHEMATICS LETTERS, 2003, 16 (03) : 365 - 368
  • [38] Probabilistic Bernoulli and Euler Polynomials
    T. Kim
    D. S. Kim
    Russian Journal of Mathematical Physics, 2024, 31 : 94 - 105
  • [39] ON THE IDENTITIES FOR THE BERNOULLI AND EULER POLYNOMIALS
    Kim, D. S.
    Kim, T.
    Lee, S. H.
    Lee, B.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (03) : 413 - 423
  • [40] Probabilistic Bernoulli and Euler Polynomials
    Kim, T.
    Kim, D. S.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2024, 31 (01) : 94 - 105