Automatic breast density classification using a convolutional neural network architecture search procedure

被引:35
|
作者
Fonseca, Pablo [1 ]
Mendoza, Julio [1 ]
Wainer, Jacques [1 ]
Ferrer, Jose [2 ]
Pinto, Joseph [3 ]
Guerrero, Jorge [3 ]
Castaneda, Benjamin [4 ]
机构
[1] Univ Estadual Campinas, RECOD Lab, Campinas, SP, Brazil
[2] Med Innovat & Technol, Res & Dev, Lima, Peru
[3] Oncosalud, Dept Radiol, Lima, Peru
[4] Pontifical Catholic Univ Peru, Lab Imagenes Med, Lima, Peru
关键词
Mammograms; breast density; automatic assessment; feature learning; convolutional neural networks;
D O I
10.1117/12.2081576
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Breast parenchymal density is considered a strong indicator of breast cancer risk and therefore useful for preventive tasks. Measurement of breast density is often qualitative and requires the subjective judgment of radiologists. Here we explore an automatic breast composition classification workflow based on convolutional neural networks for feature extraction in combination with a support vector machines classifier. This is compared to the assessments of seven experienced radiologists. The experiments yielded an average kappa value of 0.58 when using the mode of the radiologists' classifications as ground truth. Individual radiologist performance against this ground truth yielded kappa values between 0.56 and 0.79.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Automatic method for classification of groundnut diseases using deep convolutional neural network
    Vaishnnave, M. P.
    Devi, K. Suganya
    Ganeshkumar, P.
    SOFT COMPUTING, 2020, 24 (21) : 16347 - 16360
  • [42] Determination of mammographic breast density using a deep convolutional neural network
    Ciritsis, Alexander
    Rossi, Cristina
    de Martini, Ilaria Vittoria
    Eberhard, Matthias
    Marcon, Magda
    Becker, Anton S.
    Berger, Nicole
    Boss, Andreas
    BRITISH JOURNAL OF RADIOLOGY, 2018, 92 (1093):
  • [43] ELNet:Automatic classification and segmentation for esophageal lesions using convolutional neural network
    Wu, Zhan
    Ge, Rongjun
    Wen, Minli
    Liu, Gaoshuang
    Chen, Yang
    Zhang, Pinzheng
    He, Xiaopu
    Hua, Jie
    Luo, Limin
    Li, Shuo
    MEDICAL IMAGE ANALYSIS, 2021, 67 (67)
  • [44] Automatic method for classification of groundnut diseases using deep convolutional neural network
    M. P. Vaishnnave
    K. Suganya Devi
    P. Ganeshkumar
    Soft Computing, 2020, 24 : 16347 - 16360
  • [45] Features Fusion based Automatic Modulation Classification Using Convolutional Neural Network
    Lin, Chunsheng
    Huang, Juanjuan
    Huang, Sai
    Yao, Yuanyuan
    Guo, Xin
    IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2020, : 1099 - 1104
  • [46] Two-Phase Evolutionary Convolutional Neural Network Architecture Search for Medical Image Classification
    Ghosh, Arjun
    Jana, Nanda Dulal
    Das, Swagatam
    Mallipeddi, Rammohan
    IEEE ACCESS, 2023, 11 : 115280 - 115305
  • [47] Enhanced brain tumor classification using graph convolutional neural network architecture
    M. Ravinder
    Garima Saluja
    Sarah Allabun
    Mohammed S. Alqahtani
    Mohamed Abbas
    Manal Othman
    Ben Othman Soufiene
    Scientific Reports, 13
  • [48] Classification of Human Driving Behaviour Images Using Convolutional Neural Network Architecture
    Cengil, Emine
    Cinar, Ahmet
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2019, 2019, 11734 : 264 - 274
  • [49] Enhanced brain tumor classification using graph convolutional neural network architecture
    Ravinder, M.
    Saluja, Garima
    Allabun, Sarah
    Alqahtani, Mohammed S.
    Abbas, Mohamed
    Othman, Manal
    Soufiene, Ben Othman
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [50] Automatic search of architecture and hyperparameters of graph convolutional networks for node classification
    Liu, Yang
    Liu, Jing
    Li, Yifan
    APPLIED INTELLIGENCE, 2023, 53 (09) : 11104 - 11119