Semiclassical (QFT) and quantum (STRING) rotating black holes and their evaporation:: New results

被引:3
|
作者
Bouchareb, A. [1 ,2 ]
Medrano, M. Ramon [2 ,3 ]
Sanchez, N. G. [2 ]
机构
[1] Univ Annaba, Dept Phys, Annaba 23000, Algeria
[2] CNRS, UMR 8112, LERMA, Observ Paris, F-75014 Paris, France
[3] Univ Complutense, Fac Ciencias Fis, Dept Fis Teor, E-28040 Madrid, Spain
来源
关键词
Kerr Newman black holes; black hole evaporation; extremal black holes; semiclassical gravity; quantum gravity; quantum strings; classical/quantum duality;
D O I
10.1142/S0217751X07035252
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Combination of both quantum field theory (QFT) and string theory in curved backgrounds in a consistent framework, the string analogue model, allows us to provide a full picture of the Kerr-Newman black hole and its evaporation going beyond the current picture. We compute the quantum emission cross-section of strings by a Kerr-Newman black hole (KNbh). It shows the black hole emission at the Hawking temperature T-sem in the early stage of evaporation and the new string emission featuring a Hagedorn transition into a string state of temperature T-s at the last stages. New bounds on J and Q emerge in the quantum string regime (besides the known ones of the classical/semiclassical QFT regime). The last state of evaporation of a semiclassical Kerr-Newman black hole with mass M > m(P1), angular momentum J and charge Q is a string state of temperature T-s string mass M-s, J = 0 and Q = 0, decaying as usual quantum strings do into all kinds of particles. (Naturally, in this framework, there is no loss of information, (there is no paradox at all).) We compute the string entropy S-s(m, j) from the microscopic string density of states of mass m and spin mode j, rho(m, j). (Besides the Hagedorn transition at T-s) we find for high j (extremal string states j --> m(2)alpha'c), a new phase transition at a temperature T-sj = root j/hT(s) higher than T-s By precisely identifying the semiclassical and quantum (string) gravity regimes, we find a new formula for the Kerr black hole entropy S-sem (M, J), as a function of the usual Bekenstein-Hawking entropy S-sem((0)). For M >> m(P1) and J < GM(2)/c, S-sem((0)) is the leading term, m em but for high angular momentum, (nearly extremal case j = G M-2/c), a gravitational phase transition operates and the whole entropy S-sem is drastically different from the Bekenstein-Hawking entropy S-sem((0)). This new extremal black hole transition occurs at a em temperature T-sem J = (J/h)T-sem, higher than the Hawking temperature T-sem.
引用
收藏
页码:1627 / 1648
页数:22
相关论文
共 50 条
  • [31] Signatures of rotating black holes in quantum superposition
    Suryaatmadja, Cendikiawan
    Arabaci, Cemile Senem
    Robbins, Matthew P. G.
    Foo, Joshua
    Zych, Magdalena
    Mann, Robert B.
    PHYSICAL REVIEW D, 2024, 110 (06)
  • [33] Entropy of nonextreme charged rotating black holes in string theory
    Cvetic, M
    Youm, D
    PHYSICAL REVIEW D, 1996, 54 (04): : 2612 - 2620
  • [34] Entropy of a quantum field in rotating black holes
    Lee, MH
    Kim, JK
    PHYSICAL REVIEW D, 1996, 54 (06): : 3904 - 3914
  • [35] Constraints on the quantum state of pairs produced by semiclassical black holes
    Brustein, Ram
    Medved, A. J. M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (07): : 1 - 17
  • [36] Improved semiclassical model for real-time evaporation of matrix black holes
    Berenstein, David
    Guan, Yueshu
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2021, 36 (29):
  • [37] Constraints on the quantum state of pairs produced by semiclassical black holes
    Ram Brustein
    A. J. M. Medved
    Journal of High Energy Physics, 2015
  • [38] Quantum cooling evaporation process in regular black holes
    Myung, Yun Soo
    Kim, Yong-Wan
    Park, Young-Jai
    PHYSICS LETTERS B, 2007, 656 (4-5) : 221 - 225
  • [39] EQUILIBRIUM OF 2 ROTATING CHARGED BLACK-HOLES AND THE DIRAC STRING
    TOMIMATSU, A
    PROGRESS OF THEORETICAL PHYSICS, 1984, 72 (01): : 73 - 82
  • [40] Towards rotating noncircular black holes in string-inspired gravity
    Nakashi, Keisuke
    Kimura, Masashi
    PHYSICAL REVIEW D, 2020, 102 (08):