Extensions of the universal theta divisor

被引:6
|
作者
Kass, Jesse Leo [1 ,2 ]
Pagani, Nicola [2 ,3 ]
机构
[1] Univ South Carolina, Dept Math, 1523 Greene Str, Columbia, SC 29208 USA
[2] Leibniz Univ Hannover, Inst Algebra Geometrie, Welfengarten 1, D-30060 Hannover, Germany
[3] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England
基金
英国工程与自然科学研究理事会;
关键词
Theta divisor; Moduli of curves; Compactified Jacobian; Universal Jacobian; Wall-crossing; COMPACTIFIED PICARD STACKS; STABLE CURVES; MODULI STACK; REDUCED CURVES; MARKED POINTS; JACOBIANS; (M)OVER-BAR(G); BUNDLES; VARIETY;
D O I
10.1016/j.aim.2017.09.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Jacobian varieties of smooth curves fit together to form a family, the universal Jacobian, over the moduli space of smooth pointed curves, and the theta divisors of these curves form a divisor in the universal Jacobian. In this paper we describe how to extend these families over the moduli space of stable pointed curves using a stability parameter. We then prove a wall-crossing formula describing how the theta divisor varies with this parameter. We use this result to analyze divisors on the moduli space of smooth pointed curves that have recently been studied by Grushevsky-Zakharov, Hain and Muller. Finally, we compute the pullback of the theta divisor studied in Alexeev's work on stable semiabelic varieties and in Caporaso's work on theta divisors of compactified Jacobians. (c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:221 / 268
页数:48
相关论文
共 50 条
  • [21] Powers of the Theta Divisor and Relations in the Tautological Ring
    Clader, Emily
    Grushevsky, Samuel
    Janda, Felix
    Zakharov, Dmitry
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (24) : 7725 - 7754
  • [22] On the theta divisor of SU(2,1)
    Brivio, S
    Verra, A
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1999, 10 (08) : 925 - 942
  • [23] DIMENSION OF THE SPACE OF SECTIONS OF THE GENERALIZED THETA DIVISOR
    LASZLO, Y
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1991, 119 (03): : 293 - 306
  • [24] SPECTRAL CURVES AND THE GENERALIZED THETA-DIVISOR
    BEAUVILLE, A
    NARASIMHAN, MS
    RAMANAN, S
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 398 : 169 - 179
  • [25] A parametrization of the theta divisor of the quartic double solid
    Markushevich, DG
    Tikhomirov, AS
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2003, 2003 (51) : 2747 - 2778
  • [26] A TORELLI THEOREM FOR OSCULATING CONES TO THE THETA DIVISOR
    KEMPF, GR
    SCHREYER, FO
    COMPOSITIO MATHEMATICA, 1988, 67 (03) : 343 - 353
  • [27] Singularities of the Theta Divisor at Points of Order Two
    Grushevsky, Samuel
    Manni, Riccardo Salvati
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [28] A LOG RESOLUTION FOR THE THETA DIVISOR OF A HYPERELLIPTIC CURVE
    Schnell, Christian
    Yang, Ruijie
    arXiv, 2022,
  • [29] The Pfaffian structure defining a Prym theta divisor
    Smith, R
    Varley, R
    Geometry of Riemann Surfaces and Abelian Varieties, 2006, 397 : 215 - 236
  • [30] THE DIVISOR OF CURVES WITH A VANISHING THETA-NULL
    BIGAS, MTI
    COMPOSITIO MATHEMATICA, 1988, 66 (01) : 15 - 22