DFT study of TiO2 brookite (210) surface doped with silver and molybdenum

被引:1
|
作者
Phuthu, Lutendo [1 ]
Dima, Ratshilumela Steve [1 ,2 ]
Maluta, Nnditshedzeni Eric [1 ,3 ]
Kirui, Joseph K. [1 ]
Maphanga, Rapela Regina [2 ,3 ]
机构
[1] Univ Venda, Dept Phys, Thohoyandou, South Africa
[2] CSIR, Next Generat Enterprises & Inst, Pretoria, South Africa
[3] Natl Inst Theoret & Computat Sci NITheCS, Gauteng, South Africa
关键词
Brookite TiO2; DSSC; density functional theory; surface; doping; TOTAL-ENERGY CALCULATIONS; PHOTOCATALYTIC ACTIVITY; RUTILE TIO2; ELECTRONIC-STRUCTURES; OPTICAL-PROPERTIES; ANATASE; NITROGEN; 1ST-PRINCIPLES; ADSORPTION; EFFICIENCY;
D O I
10.1088/2053-1591/ac8ae4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The most popular semiconductor in dye-sensitized solar cells (DSSCs) is titanium dioxide (TiO2) because of its low cost, non-toxicity, and good stability. However, the DSSCs still have low efficiency due to the low light absorption of TiO2 in the visible region. Understanding the properties of TiO2 can contribute to improving the efficiency of DSSCs. In this study, we use density functional theory to investigate the electronic and optical properties of TiO2 brookite (210) surface mono-doped and co-doped with 4d transition metals, silver, and molybdenum. Our results show that the band gap energy of brookite (210) surface is 3.514 eV, which reduces to 1.143 eV and 0.183 eV when doped with Ag and Mo, respectively. However, doping with both Ag and Mo yielded a band gap of 0.387 eV. The results suggest the presence of Ag and Mo 4d states below the conduction band minimum, which could be responsible for the narrowing of the band gap on the brookite (210) surface. Both mono-doped and co-doped brookite (210) surfaces have higher visible light absorbance compared to the undoped brookite (210) surface and extend to the near-infrared region.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] The optical absorption edge of brookite TiO2
    Zallen, R
    Moret, MP
    SOLID STATE COMMUNICATIONS, 2006, 137 (03) : 154 - 157
  • [22] Lithium intercalation into nanocrystalline brookite TiO2
    Reddy, M. Anji
    Kishore, M. Satya
    Pralong, V.
    Varadaraju, U. V.
    Raveau, B.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (02) : A29 - A31
  • [23] Preparation and characterization of anatase-brookite TiO2 film on the PET surface
    Zhou Li Jun
    Yan Shan-Shan
    Tian Bao-Zhu
    Chen Feng
    Zhang Jin-Long
    Huang Jia-Zhen
    Zhang Li-Zhong
    ACTA PHYSICO-CHIMICA SINICA, 2006, 22 (05) : 569 - 573
  • [24] Brookite-type TiO2 nanotubes
    Deng, Qixin
    Wei, Mingdeng
    Ding, Xiaokun
    Jiang, Lilong
    Ye, Binghuo
    Wei, Kemei
    CHEMICAL COMMUNICATIONS, 2008, (31) : 3657 - 3659
  • [25] Characteristics of the silver-doped TiO2 nanoparticles
    Liu, Y
    Liu, CY
    Rong, QH
    Zhang, Z
    APPLIED SURFACE SCIENCE, 2003, 220 (1-4) : 7 - 11
  • [26] DFT Calculation of Carbon-Doped TiO2 Nanocomposites
    Gustavsen, Kim Robert
    Feng, Tao
    Huang, Hao
    Li, Gang
    Narkiewicz, Urszula
    Wang, Kaiying
    MATERIALS, 2023, 16 (18)
  • [27] A photoemission study of molybdenum hexacarbonyl adsorption and decomposition on TiO2 (110) surface
    Prunier, J.
    Domenichini, B.
    Li, Z.
    Moller, P. J.
    Bourgeois, S.
    SURFACE SCIENCE, 2007, 601 (04) : 1144 - 1152
  • [28] DFT study of formaldehyde coupling reaction on rutile TiO2 (110) surface
    Tang, Miru
    Ge, Qingfeng
    Zhang, Zhenrong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [29] DFT study of inserted cluster modeling of rutile TiO2(110) surface
    Tan, K
    Lin, MH
    Wang, NQ
    Zhang, QE
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2005, 26 (06): : 1118 - 1121
  • [30] A DFT Study of TiO2 Adsorption on GaN (0001) Line Defect Surface
    Liang, Xiaoqin
    Qiu, Lifen
    Huang, Ping
    Yang, Chun
    ENVIRONMENTAL PROTECTION AND RESOURCES EXPLOITATION, PTS 1-3, 2013, 807-809 : 2836 - +