Investigating quantum metrology in noisy channels

被引:12
|
作者
Falaye, B. J. [1 ]
Adepoju, A. G. [2 ]
Aliyu, A. S. [1 ]
Melchor, M. M. [2 ]
Liman, M. S. [1 ]
Oluwadare, O. J. [3 ]
Gonzalez-Ramirez, M. D. [2 ]
Oyewumi, K. J. [4 ]
机构
[1] Fed Univ Lafia, Dept Phys, PMB 146, Lafia, Nigeria
[2] UPALM, Inst Politecn Nacl, CIDETEC, Cdmx 07700, Mexico
[3] Fed Univ Oye Ekiti, Dept Phys, PMB 373, Ekiti, Ekiti State, Nigeria
[4] Univ Ilorin, Theoret Phys Sect, Dept Phys, PMB 1515, Ilorin, Nigeria
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
FISHER INFORMATION; FIDELITY;
D O I
10.1038/s41598-017-16710-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum entanglement lies at the heart of quantum information and quantum metrology. In quantum metrology, with a colossal amount of quantum Fisher information (QFI), entangled systems can be ameliorated to be a better resource scheme. However, noisy channels affect the QFI substantially. This research work seeks to investigate how QFI of N-qubit Greenberger-Horne-Zeilinger (GHZ) state is affected when subjected to decoherence channels: bit-phase flip (BPF) and generalize amplitude damping (GAD) channels, which can be induced experimentally. We determine the evolution under these channels, deduce the eigenvalues, and then derive the QFI. We found that when there is no interaction with the environment, the Heisenberg limit can be achieved via rotations along the z direction. It has been shown that in BPF channel, the maximal mean QFI of the N-qubit GHZ state ((F) over bar (max)) dwindles as decoherence rate (p(B)) increases due to flow of information from the system to the environment, until p(B) = 0.5, then revives to form a symmetric around p(B) = 0.5. Thus, p(B) > 0.5 leads to a situation where more noise yields more efficiency. We found that in GAD channel, at finite temperature, QFIs decay more rapidly than at zero temperature. Our results also reveal that QFI can be enhanced by adjusting the temperature of the environment.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Theory of Compression Channels for Postselected Quantum Metrology
    Yang, Jing
    PHYSICAL REVIEW LETTERS, 2024, 132 (25)
  • [32] Restoring Heisenberg scaling in noisy quantum metrology by monitoring the environment
    Albarelli, Francesco
    Rossi, Matteo A. C.
    Tamascelli, Dario
    Genoni, Marco G.
    QUANTUM, 2018, 2
  • [33] Variational quantum state preparation for quantum-enhanced metrology in noisy systems
    Castro, Juan C. Zuniga
    Larson, Jeffrey
    Narayanan, Sri Hari Krishna
    Colussi, Victor E.
    Perlin, Michael A.
    Lewis-Swan, Robert J.
    PHYSICAL REVIEW A, 2024, 110 (05)
  • [34] Achieving the Heisenberg limit with Dicke states in noisy quantum metrology
    Saleem, Zain H.
    Perlin, Michael
    Shaji, Anil
    Gray, Stephen K.
    PHYSICAL REVIEW A, 2024, 109 (05)
  • [35] Time-Energy Uncertainty Relation for Noisy Quantum Metrology
    Faist, Philippe
    Woods, Mischa P.
    Albert, Victor V.
    Renes, Joseph M.
    Eisert, Jens
    Preskill, John
    PRX QUANTUM, 2023, 4 (04):
  • [36] Metrology-assisted entanglement distribution in noisy quantum networks
    Morelli, Simon
    Sauerwein, David
    Skotiniotis, Michalis
    Friis, Nicolai
    QUANTUM, 2022, 6
  • [37] IMPROVING THE QUALITY OF NOISY SPATIAL QUANTUM CHANNELS
    Tang, Ning
    Fan, Zi-Long
    Zeng, Hao-Sheng
    QUANTUM INFORMATION & COMPUTATION, 2015, 15 (7-8) : 568 - 581
  • [38] Quantum states tomography with noisy measurement channels
    Bogdanov, Yu. I.
    Bantysh, B. I.
    Bogdanova, N. A.
    Kvasnyy, A. B.
    Lukichev, V. F.
    INTERNATIONAL CONFERENCE ON MICRO- AND NANO-ELECTRONICS 2016, 2016, 10224
  • [39] Quantum private comparison over noisy channels
    Siddhu, Vikesh
    Arvind
    QUANTUM INFORMATION PROCESSING, 2015, 14 (08) : 3005 - 3017
  • [40] Quantum dynamical speedup in correlated noisy channels
    Xu, Kai
    Zhang, Guo-Feng
    Liu, Wu-Ming
    PHYSICAL REVIEW A, 2019, 100 (05)