Dynamic simulation of suspensions of non-Brownian hard spheres

被引:67
|
作者
Dratler, DI
Schowalter, WR
机构
[1] Department of Chemical Engineering, University of Illinois, Urbana
[2] Exxon Production Research Company, Houston, TX 77252-2189
关键词
D O I
10.1017/S0022112096008038
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work, we investigate the suitability of models based solely on continuum hydrodynamics for Stokesian Dynamics simulations of sheared suspensions of non-Brownian hard spheres. The suspensions of interest consist of monolayers of uniform rigid spheres subjected to a linear shear field. Areal fractions ranged from phi(a) = 0.2 to 0.6. For these suspensions, two sets of Stokesian Dynamics simulations were performed. For the first set, particle interactions were assumed to be strictly hydrodynamic in nature. These simulations are analogous to those of Brady & Bossis (1985) and Chang & Powell (1993). For the second set of simulations, particles were subjected to both hydrodynamic and short-range repulsive forces. The repulsion serves as a qualitative model of non-hydrodynamic effects important when particle separation distances are small. Results from both sets of simulations were found to be within the range of established experimental data for viscosities of suspensions. However, simulations employing the pure hydrodynamic model lead to very small separation distances between particles. These small separations give rise to particle overlaps that could not be eliminated by time-step refinement. The instantaneous number of overlaps increased with density and typically exceeded the number of particles at the highest densities considered. More critically, for very dense suspensions the simulations failed to approach a long-time asymptotic state. For simulations employing a short-range repulsive force, these problems were eliminated. The repulsion had the effect of preventing extremely small separations, thereby eliminating particle overlaps. At high concentrations, viscosities computed using the two methods are significantly different. This suggests that the dynamics of particles near contact have a significant impact on bulk properties. Furthermore, the results suggest that a critical aspect of the physics important at small particle separation distances is missing from the pure hydrodynamic model, making it unusable for computing microstructures of dense suspensions. In contrast, simulations employing a short-range repulsive force appear to produce more realistic microstructures, and can be performed even at very high densities.
引用
收藏
页码:53 / 77
页数:25
相关论文
共 50 条
  • [41] Viscosity scaling in suspensions of non-Brownian rodlike particles
    Ralambotiana, T
    Blanc, R
    Chaouche, M
    PHYSICS OF FLUIDS, 1997, 9 (12) : 3588 - 3594
  • [42] Self-assembling of non-Brownian magnetized spheres
    Carvente, O.
    Peraza-Mues, G. G.
    Salazar, J. M.
    Ruiz-Suarez, J. C.
    GRANULAR MATTER, 2012, 14 (03) : 303 - 308
  • [43] Rheology of non-Brownian suspensions: a rough contact story
    Lemaire, Elisabeth
    Blanc, Frederic
    Claudet, Cyrille
    Gallier, Stany
    Lobry, Laurent
    Peters, Francois
    RHEOLOGICA ACTA, 2023, 62 (5-6) : 253 - 268
  • [44] Normal stress measurements in sheared non-Brownian suspensions
    Garland, S.
    Gauthier, G.
    Martin, J.
    Morris, J. F.
    JOURNAL OF RHEOLOGY, 2013, 57 (01) : 71 - 88
  • [45] Shear thickening regimes of dense non-Brownian suspensions
    Ness, Christopher
    Sun, Jin
    SOFT MATTER, 2016, 12 (03) : 914 - 924
  • [46] Microscopic Mechanism for Shear Thickening of Non-Brownian Suspensions
    Fernandez, Nicolas
    Mani, Roman
    Rinaldi, David
    Kadau, Dirk
    Mosquet, Martin
    Lombois-Burger, Helene
    Cayer-Barrioz, Juliette
    Herrmann, Hans J.
    Spencer, Nicholas D.
    Isa, Lucio
    PHYSICAL REVIEW LETTERS, 2013, 111 (10)
  • [47] Universal scaling law in frictional non-Brownian suspensions
    Blanc, Frederic
    D'Ambrosio, Enzo
    Lobry, Laurent
    Peters, Francois
    Lemaire, Elisabeth
    PHYSICAL REVIEW FLUIDS, 2018, 3 (11):
  • [48] Rheology of non-Brownian suspensions: a rough contact story
    Elisabeth Lemaire
    Frédéric Blanc
    Cyrille Claudet
    Stany Gallier
    Laurent Lobry
    François Peters
    Rheologica Acta, 2023, 62 : 253 - 268
  • [49] Relaxation Dynamics of Non-Brownian Spheres Below Jamming
    Yoshihiko Nishikawa
    Atsushi Ikeda
    Ludovic Berthier
    Journal of Statistical Physics, 2021, 182
  • [50] An effective medium approach for the elongational viscosity of non-colloidal and non-Brownian hard-sphere suspensions
    Housiadas, Kostas D.
    PHYSICS OF FLUIDS, 2015, 27 (08)