Monotonicity results for CFC nabla fractional differences with negative lower bound

被引:13
|
作者
Goodrich, Christopher S. S. [1 ]
Jonnalagadda, Jagan M. M. [2 ]
机构
[1] UNSW Sydney, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Birla Inst Technol & Sci Pilani, Dept Math, Hyderabad 500078, Telangana, India
关键词
Discrete fractional calculus; monotonicity; exponential kernel; sequential fractional difference; negative lower bound; CONVEXITY;
D O I
10.1515/anly-2021-0011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the sequential CFC-type nabla fractional difference (CFC del(nu)(a+1) CFC del(mu)(a)u)(t) and show that one can derive monotonicity-type results even in the case where this difference satisfies a strictly negative lower bound. This illustrates some dissimilarities between the integer-order and fractional- order cases.
引用
收藏
页码:221 / 229
页数:9
相关论文
共 50 条
  • [21] A Polynomial Lower Bound for Testing Monotonicity
    Belovs, Aleksandrs
    Blais, Eric
    STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, : 1021 - 1032
  • [22] A POLYNOMIAL LOWER BOUND FOR TESTING MONOTONICITY
    Belovs, Aleksandrs
    Blais, Eric
    SIAM JOURNAL ON COMPUTING, 2021, 50 (03) : STOC16406 - STOC16433
  • [23] On Delta and Nabla Caputo Fractional Differences and Dual Identities
    Abdeljawad, Thabet
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2013, 2013
  • [24] Monotonicity Analysis of Fractional Proportional Differences
    Suwan, Iyad
    Owies, Shahd
    Abussa, Muayad
    Abdeljawad, Thabet
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
  • [25] Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel
    Abdeljawad, Thabet
    Baleanu, Dumitru
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 106 - 110
  • [26] ANALYSIS OF CONVEXITY RESULTS FOR DISCRETE FRACTIONAL NABLA OPERATORS
    Dahal, Rajendra
    Goodrich, Christopher S.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (06) : 1981 - 2001
  • [27] A Study of Monotonicity Analysis for the Delta and Nabla Discrete Fractional Operators of the Liouville-Caputo Family
    Mohammed, Pshtiwan Othman
    Goodrich, Christopher S. S.
    Srivastava, Hari Mohan
    Al-Sarairah, Eman
    Hamed, Y. S.
    AXIOMS, 2023, 12 (02)
  • [28] Monotonicity results and a sharp upper bound for the Γ function
    Kupan, Pal A.
    Szasz, Robert
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (07) : 562 - 570
  • [29] A lower bound for distribution-free monotonicity testing
    Halevy, S
    Kushilevitz, E
    APPROXIMATION, RANDOMIZATION AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2005, 3624 : 330 - 341
  • [30] Monotonicity results for quasilinear fractional systems in epigraphs
    Le, Phuong
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2022, 41 (01): : 49 - 64