On some quiver determinantal varieties

被引:0
|
作者
Fei, Jiarui [2 ,1 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
关键词
Quiver determinantal variety; Free resolution; Quiver representation; Cohen-Macaulay module; Kronecker coefficient; Tensor invariants; Semi-invariant;
D O I
10.1016/j.jalgebra.2014.10.044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce certain quiver analogue of the determinantal variety. We study the Kempf-Lascoux-Weyman complex associated to a line bundle on the variety. In the case of generalized Kronecker quivers, we give a sufficient condition on when the complex resolves a maximal Cohen-Macaulay module supported on the quiver determinantal variety. This allows us to find the set-theoretical defining equations of these varieties. When the variety has codimension one, the only irreducible polynomial function is a relative tensor invariant. As a by-product, we find some vanishing condition for the Kronecker coefficients. In the end, we make a generalization from the quiver setting to the tensor setting. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [31] QUIVER VARIETIES AND HILBERT SCHEMES
    Kuznetsov, Alexander
    MOSCOW MATHEMATICAL JOURNAL, 2007, 7 (04) : 673 - 697
  • [32] Kirwan surjectivity for quiver varieties
    Kevin McGerty
    Thomas Nevins
    Inventiones mathematicae, 2018, 212 : 161 - 187
  • [33] On the normal sheaf of determinantal varieties
    Kleppe, Jan O.
    Miro-Roig, Rosa M.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 719 : 173 - 209
  • [34] Jet schemes of determinantal varieties
    Yuen, Cornelia
    ALGEBRA, GEOMETRY AND THEIR INTERACTIONS, 2007, 448 : 261 - 270
  • [35] Toric double determinantal varieties
    Blose, Alexander
    Klein, Patricia
    Mcgrath, Owen
    Morris, A. N. D. Jackson
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (07) : 3085 - 3093
  • [36] LINEAR SECTIONS OF DETERMINANTAL VARIETIES
    EISENBUD, D
    AMERICAN JOURNAL OF MATHEMATICS, 1988, 110 (03) : 541 - 575
  • [37] DETERMINANTAL VARIETIES AND SYMMETRIC POLYNOMIALS
    PRAGACZ, P
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1987, 21 (03) : 249 - 250
  • [38] The Representation Type of Determinantal Varieties
    Kleppe, Jan O.
    Miro-Roig, Rosa M.
    ALGEBRAS AND REPRESENTATION THEORY, 2017, 20 (04) : 1029 - 1059
  • [39] Quiver varieties and Demazure modules
    Alistair Savage
    Mathematische Annalen, 2006, 335 : 31 - 46
  • [40] Grothendieck classes of quiver varieties
    Buch, AS
    DUKE MATHEMATICAL JOURNAL, 2002, 115 (01) : 75 - 103