Ultimate performance of polymer: fullerene bulk heterojunction tandem solar cells

被引:31
|
作者
Kotlarski, J. D. [1 ]
Blom, P. W. M. [1 ,2 ]
机构
[1] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
[2] TNO Holst Ctr, NL-5605 KN Eindhoven, Netherlands
关键词
DESIGN RULES; EFFICIENCY; DONORS;
D O I
10.1063/1.3549693
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present the model calculations to explore the potential of polymer: fullerene tandem solar cells. As an approach we use a combined optical and electrical device model, where the absorption profiles are used as starting point for the numerical current-voltage calculations. With this model a maximum power efficiency of 11.7% for single cells has been achieved as a reference. For tandem structures with a ZnO/poly(3,4-ethylenedioxythiophene)/poly(styrenesulphonic acid) middle electrode an ultimate efficiency of 14.1% has been calculated. In the optimum configuration the subcell with the narrowest band gap is placed closest to the incoming light. Consequently, tandem structures are expected to enhance the performance of optimized single cells by about 20%. (C) 2011 American Institute of Physics. [doi:10.1063/1.3549693]
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Enhanced performance of bulk heterojunction solar cells using double layers deposition of polymer:fullerene derivatives
    Khantha, Chanitpa
    Chonsut, Teantong
    Kaewprajak, Anusit
    Kumnorkaew, Pisist
    Wootthikanokkhan, Jatuphorn
    SYNTHETIC METALS, 2015, 207 : 72 - 78
  • [32] Screen-Printed Polymer:Fullerene Bulk-Heterojunction Solar Cells
    Zhang, Bing
    Chae, Heeyeop
    Cho, Sung Min
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2009, 48 (02)
  • [33] High-Performance Air-Processed Polymer-Fullerene Bulk Heterojunction Solar Cells
    Nam, Chang-Yong
    Su, Dong
    Black, Charles T.
    ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (22) : 3552 - 3559
  • [34] Combined optical and electrical modeling of polymer:fullerene bulk heterojunction solar cells
    Kotlarski, Jan D.
    Blom, Paul W. M.
    Koster, Lambert. J. A.
    Lenes, Martijn
    Slooff, Lenneke H.
    JOURNAL OF APPLIED PHYSICS, 2008, 103 (08)
  • [35] Preparation and characterization of methanofullerenes for polymer-fullerene bulk heterojunction solar cells
    Yang, Cheng-Hsien
    Chang, Jia-Yaw
    Yeh, Pei-Hong
    Guo, Tzung-Fang
    CARBON, 2007, 45 (15) : 2951 - 2956
  • [36] Homogeneous phase separation in polymer:Fullerene bulk heterojunction organic solar cells
    School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan,Shandong
    250100, China
    不详
    不详
    400714, China
    不详
    200240, China
    Org. Electron, (266-274):
  • [37] Recombination lifetime of free polarons in polymer/fullerene bulk heterojunction solar cells
    Li, Kejia
    Li, Lijun
    Campbell, Joe C.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (03)
  • [38] Performance Analysis of Bulk Heterojunction Solar Cells Fabricated by Polymer:Fullerene:Carbon-Nanotube Composites
    Liu, Liming
    Stanchina, William E.
    Li, Guangyong
    2009 IEEE NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE, 2009, : 207 - 211
  • [39] Thickness Effect of Bulk Heterojunction Layers on the Performance and Stability of Polymer:Fullerene Solar Cells with Alkylthiothiophene-Containing Polymer
    Nam, Sungho
    Song, Myeonghun
    Kim, Hwajeong
    Bradley, Donal D. C.
    Kim, Youngkyoo
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (10): : 9263 - 9270
  • [40] Bulk Heterojunction Polymer Solar Cells
    Gao Yurong
    Ma Tingli
    PROGRESS IN CHEMISTRY, 2011, 23 (05) : 991 - 1013