A general moving detection method using dual-target nonparametric background model

被引:15
|
作者
Zhong, Zuofeng [1 ,2 ,5 ]
Wen, Jiajun [3 ,4 ,5 ,6 ]
Zhang, Bob [7 ]
Xu, Yong [1 ,2 ]
机构
[1] Harbin Inst Technol Shenzhen, Biocomp Res Ctr, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol, Shenzhen Med Biometr Percept & Anal Engn Lab, Shenzhen 518055, Guangdong, Peoples R China
[3] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518055, Peoples R China
[4] Shenzhen Univ, Natl Engn Lab Big Data Syst Comp Technol, Shenzhen 518060, Peoples R China
[5] Hong Kong Polytech Univ, Inst Text & Clothing, Hong Kong, Peoples R China
[6] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518055, Peoples R China
[7] Univ Macau, Dept Comp & Informat Sci, Taipa, Macao, Peoples R China
基金
中国博士后科学基金;
关键词
Moving detection; Background modeling; Video surveillance; OBJECT DETECTION; FOREGROUND OBJECTS; MOTION DETECTION; SUBTRACTION; TRACKING; DECOMPOSITION; TENSOR;
D O I
10.1016/j.knosys.2018.10.031
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Designing a general motion detection method that has self-adaptive parameters remains a challenging issue in video surveillance. To address this problem, in this paper, a dual-target nonparametric background modeling (DTNBM) method is proposed. This model integrates the gray value and gradient to represent each pixel, which enhances the discriminative ability of the background model. We design a simple but effective classification rule for determining whether a pixel belongs to a motionless object or dynamic background. Moreover, DTNBM provides suitable updating strategies for the two categories of pixels. Most importantly, DTNBM utilizes a dual-target updating strategy to preserve the completeness of static objects and prevent false detections that are caused by background initialization or frequent background variations. To improve the updating effectiveness and efficiency, we combine similar and random schemes for background updating. The key features of DTNBM include nonparametric modeling and a controlling threshold adaptation process, which render our method easy to use on various scenarios. Comprehensive experiments have been conducted, and the results demonstrate that DTNBM outperforms the state-of-the-art methods in foreground detection. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 50 条
  • [41] De novo generation of dual-target compounds using artificial intelligence
    Yasuda, Kasumi
    Berenger, Francois
    Amaike, Kazuma
    Ueda, Ayaka
    Nakagomi, Tomoya
    Hamasaki, Genki
    Li, Chen
    Otani, Noriko Yuyama
    Kaitoh, Kazuma
    Tsuda, Koji
    Itami, Kenichiro
    Yamanishi, Yoshihiro
    ISCIENCE, 2025, 28 (01)
  • [42] Target Detection Using the Background Model from the Topological Anomaly Detection Algorithm
    Munoz, Leidy P. Dorado
    Messinger, David W.
    Ziemann, Amanda K.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIX, 2013, 8743
  • [43] Analytical and Diagnostic Performance of a Dual-Target Blood Detection Test for Hepatocellular Carcinoma
    Yang, Qiankun
    Dong, Lanlan
    Zhang, Lianglu
    Zhang, Wei
    Zhang, Yan
    Huang, Yue
    Jin, Huifang
    Yang, Hao
    Liu, Xing
    Zhao, Yanteng
    CANCER REPORTS, 2024, 7 (09)
  • [44] GPGPU Implementation of an Improved Nonparametric Background Modeling for Moving Object Detection Strategies
    Cuevas, Carlos
    Berjon, Daniel
    Moran, Francisco
    Garcia, Narciso
    2013 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2013, : 23 - 24
  • [45] Moving Target Detection Method Based on Improved Gaussian Mixture Model
    Ma, J. Y.
    Jie, F. R.
    Hu, Y. J.
    NINTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2017), 2017, 10420
  • [46] Ground Moving Target Detection and Estimation By Using Dual Speed SAR Platform
    Viet Thuy Vu
    Pettersson, Mats I.
    2014 IEEE RADAR CONFERENCE, 2014, : 7 - 11
  • [47] Detection probability estimation method and calculation model of photoelectric detection target in complex background
    Li, Hanshan
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2018, 12 (1-2): : 18 - 24
  • [48] Background method of radar detection of a moving small target object in the task of classifying active radars
    Anikin, A. S.
    Khristenko, A., V
    Ochirtarov, A., V
    INTERNATIONAL CONFERENCE ACTUAL TRENDS IN RADIOPHYSICS, 2020, 1499
  • [49] Small target detection in the background of sea clutter using fractal method
    Xing Hong-Yan
    Gong Ping
    Xu Wei
    ACTA PHYSICA SINICA, 2012, 61 (16)
  • [50] DIFFUSION BACKGROUND MODEL FOR MOVING OBJECTS DETECTION
    Vishnyakov, Boris V.
    Sidyakin, Sergey V.
    Vizilter, Yuri V.
    PHOTOGRAMMETRIC TECHNIQUES FOR VIDEO SURVEILLANCE, BIOMETRICS AND BIOMEDICINE, 2015, 40-5 (W6): : 65 - 71