New Lorentz spaces for the restricted weak-type Hardy's inequalities

被引:3
|
作者
Martín, J [1 ]
Soria, J [1 ]
机构
[1] Autonomous Univ Barcelona, Dept Appl Math, E-08193 Barcelona, Spain
关键词
Hardy operator; Lorentz spaces; monotone functions; weighted inequalities;
D O I
10.1016/S0022-247X(02)00584-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Associated to the class of restricted weak-type weights for the Hardy operator R-p, we find a new class of Lorentz spaces for which the normability property holds. This result is analogous to the characterization given by Sawyer for the classical Lorentz spaces. We also show that these new spaces are very natural to study the existence of equivalent norms described in terms of the maximal function. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:138 / 152
页数:15
相关论文
共 50 条
  • [21] Dual spaces of weak martingale Hardy–Lorentz–Karamata spaces
    K. Liu
    D. Zhou
    Acta Mathematica Hungarica, 2017, 151 : 50 - 68
  • [22] WEIGHTED WEAK-TYPE INEQUALITIES FOR SQUARE FUNCTIONS
    Osekowski, Adam
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (01): : 267 - 286
  • [23] Weighted weak-type inequalities and a conjecture of Sawyer
    Cruz-Uribe, D
    Martell, JM
    Perez, C
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (30) : 1849 - 1871
  • [24] SOME WEIGHTED WEAK-TYPE INEQUALITIES FOR HARDY-LITTLEWOOD MAXIMAL FUNCTION AND HILBERT TRANSFORM
    MUCKENHOUPT, B
    WHEEDEN, RL
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1977, 26 (05) : 801 - 816
  • [25] MARTINGALE INEQUALITIES ON HARDY-LORENTZ-KARAMATA SPACES
    Wu, Qingfang
    Zhou, Dejian
    Peng, Lihua
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (01): : 135 - 146
  • [26] Sharp restricted weak-type estimates for sparse operators
    Fay, Irina Holmes
    Rey, Guillermo
    Skreb, Kristina Ana
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (11)
  • [27] Dual spaces of weak martingale Hardy-Lorentz-Karamata spaces
    Liu, K.
    Zhou, D.
    ACTA MATHEMATICA HUNGARICA, 2017, 151 (01) : 50 - 68
  • [28] Weighted mixed weak-type inequalities for multilinear operators
    Li, Kangwei
    Ombrosi, Sheldy J.
    Belen Picardi, M.
    STUDIA MATHEMATICA, 2019, 244 (02) : 203 - 215
  • [29] WEAK-TYPE INEQUALITIES FOR KANTOROVITCH POLYNOMIALS AND RELATED OPERATORS
    VANWICKEREN, E
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1987, 90 (01): : 111 - 120
  • [30] Weighted Hardy inequalities of the weak type
    Cerdà, J
    Martín, J
    FUNCTION SPACES, PROCEEDINGS, 2000, 213 : 109 - 114