A Machine Learning Approach for Linux Malware Detection

被引:0
|
作者
Asmitha, K. A. [1 ]
Vinod, P. [1 ]
机构
[1] SCMS Sch Engn & Technol, Dept Comp Sci & Engn, Ernakulam, Kerala, India
关键词
dynamic analysis; system call; feature selection;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The increasing number of malware is becoming a serious threat to the private data as well as to the expensive computer resources. Linux is a Unix based machine and gained popularity in recent years. The malware attack targeting Linux has been increased recently and the existing malware detection methods are insufficient to detect malware efficiently. We are introducing a novel approach using machine learning for identifying malicious Executable Linkable Files. The system calls are extracted dynamically using system call tracer Strace. In this approach we identified best feature set of benign and malware specimens to built classification model that can classify malware and benign efficiently. The experimental results are promising which depict a classification accuracy of 97% to identify malicious samples.
引用
收藏
页码:825 / 830
页数:6
相关论文
共 50 条
  • [21] Android Malware Detection Based on Machine Learning
    Wang, Qing-Fei
    Fang, Xiang
    2018 4TH ANNUAL INTERNATIONAL CONFERENCE ON NETWORK AND INFORMATION SYSTEMS FOR COMPUTERS (ICNISC 2018), 2018, : 434 - 436
  • [22] ANALYSIS OF MACHINE LEARNING METHODS ON MALWARE DETECTION
    Aydogan, Emre
    Sen, Sevil
    2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 2066 - 2069
  • [23] Malware Detection and Classification with Machine Learning Algorithms
    Kumar, R. Vinoth
    Islam, Md Mojahidul
    Apon, Abir Hossain
    Prantha, C. S.
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 5, SMARTCOM 2024, 2024, 949 : 143 - 158
  • [24] Comparing Machine Learning Techniques for Malware Detection
    Moubarak, Joanna
    Feghali, Tony
    ICISSP: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, 2020, : 844 - 851
  • [25] Android Malware Detection Using Machine Learning
    Droos, Ayat
    Al-Mahadeen, Awss
    Al-Harasis, Tasnim
    Al-Attar, Rama
    Ababneh, Mohammad
    2022 13TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2022, : 36 - 41
  • [26] Automatic malware classification and new malware detection using machine learning
    Liu Liu
    Bao-sheng Wang
    Bo Yu
    Qiu-xi Zhong
    Frontiers of Information Technology & Electronic Engineering, 2017, 18 : 1336 - 1347
  • [27] Automatic malware classification and new malware detection using machine learning
    Liu, Liu
    Wang, Bao-sheng
    Yu, Bo
    Zhong, Qiu-xi
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2017, 18 (09) : 1336 - 1347
  • [28] Automated machine learning for deep learning based malware detection
    Brown, Austin
    Gupta, Maanak
    Abdelsalam, Mahmoud
    COMPUTERS & SECURITY, 2024, 137
  • [29] Scalable malware detection system using big data and distributed machine learning approach
    Manish Kumar
    Soft Computing, 2022, 26 : 3987 - 4003
  • [30] Scalable malware detection system using big data and distributed machine learning approach
    Kumar, Manish
    SOFT COMPUTING, 2022, 26 (08) : 3987 - 4003