Geodetic spectra of graphs

被引:7
|
作者
Chang, GJ [1 ]
Tong, LD
Wang, HT
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 106, Taiwan
[2] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 804, Taiwan
关键词
convex set; geodesic; geodetic number; geodetic spectrum; connected graph; complete graph; cycle; tree; complete r-partite graph;
D O I
10.1016/j.ejc.2003.09.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Geodetic numbers of graphs and digraphs have been investigated in the literature recently. The main purpose of this paper is to study the geodetic spectrum of a graph. For any two vertices u and v in an oriented graph D, a u-v geodesic is a shortest directed path from u to v. Let I (u, v) denote the set of all vertices lying on a u-v geodesic. For a vertex subset A, let I (A) denote the union of all I (u, v) for u, V is an element of A. The geodetic number g (D) of an oriented graph D is the minimum cardinality of a set A with I (A) = V(D). The (strong) geodetic spectrum of a graph G is the set of geodetic numbers of all (strongly connected) orientations of G. In this paper, we determine geodetic spectra and strong geodetic spectra of several classes of graphs. A conjecture and two problems given by Chartrand and Zhang are dealt with. (C) 2003 Published by Elsevier Ltd.
引用
收藏
页码:383 / 391
页数:9
相关论文
共 50 条
  • [21] AN EXTREMAL PROBLEM IN GEODETIC GRAPHS
    PARTHASARATHY, KR
    SRINIVASAN, N
    DISCRETE MATHEMATICS, 1984, 49 (02) : 151 - 159
  • [22] ON MINIMAL GEODETIC DOMINATION IN GRAPHS
    Nuenay, Hearty M.
    Jamil, Ferdinand P.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (03) : 403 - 418
  • [23] The (a, b)-forcing geodetic graphs
    Tong, Li-Da
    DISCRETE MATHEMATICS, 2009, 309 (06) : 1623 - 1628
  • [24] An algebraic characterization of geodetic graphs
    Nebesky, L
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1998, 48 (04) : 701 - 710
  • [25] GEODETIC DOMINATION INTEGRITY IN GRAPHS
    Balaraman, G.
    Kumar, Sampath S.
    Sundareswaran, R.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 : 258 - 267
  • [26] GEODETIC GRAPHS OF DIAMETER 2
    BLOKHUIS, A
    BROUWER, AE
    GEOMETRIAE DEDICATA, 1988, 25 (1-3) : 527 - 533
  • [27] GEODETIC GRAPHS OF DIAMETER 2
    ZELINKA, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1975, 25 (01) : 148 - 153
  • [28] The closed geodetic numbers of graphs
    Aniversario, Imelda S.
    Jamil, Ferdinand P.
    Canoy, Sergio R., Jr.
    UTILITAS MATHEMATICA, 2007, 74 : 3 - 18
  • [29] Enumeration of labeled geodetic planar graphs
    Voblyi, V. A.
    MATHEMATICAL NOTES, 2015, 97 (3-4) : 321 - 325
  • [30] The Edge Geodetic Number of Product Graphs
    Anand, Bijo S.
    Changat, Manoj
    Chandran, S. V. Ullas
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2018, 2018, 10743 : 143 - 154