Data-driven MPC of descriptor systems: A case study for power networks

被引:6
|
作者
Schmitz, Philipp [1 ]
Engelmann, Alexander [2 ]
Faulwasser, Timm [2 ]
Worthmann, Karl [1 ]
机构
[1] Tech Univ Ilmenau, Inst Math, Optimizat Based Control, Ilmenau, Germany
[2] TU Dortmund Univ, Inst Energy Syst Energy Efficiency & Energy Econ, Dortmund, Germany
来源
IFAC PAPERSONLINE | 2022年 / 55卷 / 30期
关键词
Data-driven control; descriptor systems; MPC; Willems' fundamental lemma; optimal control; power-swing equations; power systems; AUTOMATIC-GENERATION CONTROL; FREQUENCY CONTROL; STABILITY; MODEL; MICROGRIDS;
D O I
10.1016/j.ifacol.2022.11.079
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, data-driven predictive control of linear systems has received wide-spread research attention. It hinges on the fundamental lemma by Willems et al. In a previous paper, we have shown how this framework can be applied to predictive control of linear time-invariant descriptor systems. In the present paper, we present a case study wherein we apply data-driven predictive control to a discrete-time descriptor model obtained by discretization of the power-swing equations for a nine-bus system. Our results show the efficacy of the proposed control scheme and they underpin the prospect of the data-driven framework for control of descriptor systems. Copyright (C) 2022 The Authors.
引用
收藏
页码:359 / 364
页数:6
相关论文
共 50 条
  • [21] Data-Driven Incident Detection in Power Distribution Systems
    Aguiar, Nayara
    Gupta, Vijay
    Trevizan, Rodrigo D.
    Chalamala, Babu R.
    Byrne, Raymond H.
    2021 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2021,
  • [22] Linear MPC based on data-driven Artificial Neural Networks for large-scale nonlinear distributed parameter systems
    Xie, Weiguo
    Bonis, Ioannis
    Theodoropoulos, Constantinos
    22 EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2012, 30 : 1212 - 1216
  • [23] A Data-Driven Approach to Interactive Visualization of Power Systems
    Zhu, Jun
    Zhuang, Eric
    Ivanov, Chavdar
    Yao, Ziwen
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2011, 26 (04) : 2539 - 2546
  • [24] Stability in data-driven MPC: an inherent robustness perspective
    Berberich, Julian
    Koehler, Johannes
    Mueller, Matthias A.
    Allgower, Frank
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 1105 - 1110
  • [25] Offline Uncertainty Sampling in Data-driven Stochastic MPC
    Teutsch, Johannes
    Kerz, Sebastian
    Brudigam, Tim
    Wollherr, Dirk
    Leibold, Marion
    IFAC PAPERSONLINE, 2023, 56 (02): : 650 - 656
  • [26] Data-Driven MPC Scheme for Inertial Platform with Uncertain Systems Against External Vibrations
    Zhao, Junhu
    Yang, Qifan
    Li, Huiping
    ELECTRONICS, 2024, 13 (24):
  • [27] A Data-driven Performance Assessment Approach for MPC Systems under Multiple Operating Conditions
    Xu, Yanting
    Li, Ning
    Li, Shaoyuan
    2014 13TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION (ICARCV), 2014, : 919 - 924
  • [28] Distributed Data-Driven Power Iteration for Strongly Connected Networks
    Gusrialdi, Azwirman
    Qu, Zhihua
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 87 - 92
  • [29] Data-driven flexibility prediction in low voltage power networks
    Leiva, Javier
    Aguado, Jose A.
    Paredes, Angel
    Arboleya, Pablo
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 123
  • [30] Data-driven budget reductions: a case study
    Novak, Denise D.
    Paulos, Afeworki
    Clair, Gloriana St.
    BOTTOM LINE, 2011, 24 (01): : 24 - 34