Data-driven MPC of descriptor systems: A case study for power networks

被引:6
|
作者
Schmitz, Philipp [1 ]
Engelmann, Alexander [2 ]
Faulwasser, Timm [2 ]
Worthmann, Karl [1 ]
机构
[1] Tech Univ Ilmenau, Inst Math, Optimizat Based Control, Ilmenau, Germany
[2] TU Dortmund Univ, Inst Energy Syst Energy Efficiency & Energy Econ, Dortmund, Germany
来源
IFAC PAPERSONLINE | 2022年 / 55卷 / 30期
关键词
Data-driven control; descriptor systems; MPC; Willems' fundamental lemma; optimal control; power-swing equations; power systems; AUTOMATIC-GENERATION CONTROL; FREQUENCY CONTROL; STABILITY; MODEL; MICROGRIDS;
D O I
10.1016/j.ifacol.2022.11.079
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, data-driven predictive control of linear systems has received wide-spread research attention. It hinges on the fundamental lemma by Willems et al. In a previous paper, we have shown how this framework can be applied to predictive control of linear time-invariant descriptor systems. In the present paper, we present a case study wherein we apply data-driven predictive control to a discrete-time descriptor model obtained by discretization of the power-swing equations for a nine-bus system. Our results show the efficacy of the proposed control scheme and they underpin the prospect of the data-driven framework for control of descriptor systems. Copyright (C) 2022 The Authors.
引用
收藏
页码:359 / 364
页数:6
相关论文
共 50 条
  • [1] Data-Driven MPC for Nonlinear Systems with Reinforcement Learning
    Li, Yiran
    Wang, Qian
    Sun, Zhongqi
    Xia, Yuanqing
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 2404 - 2409
  • [2] Willems' Fundamental Lemma for Linear Descriptor Systems and Its Use for Data-Driven Output-Feedback MPC
    Schmitz, Philipp
    Faulwasser, Timm
    Worthmann, Karl
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 2443 - 2448
  • [3] Data-driven Distributed MPC for Load Frequency Control of Networked Nonlinear Power systems
    Jia, Yubin
    Zhou, Jun
    Yong, Panxiao
    Guo, Jun
    2022 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2022, : 802 - 807
  • [4] Data-Driven MPC for Quadrotors
    Torrente, Guillem
    Kaufmann, Elia
    Foehn, Philipp
    Scaramuzza, Davide
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 3769 - 3776
  • [5] Data-driven modeling of power networks
    Safaee, Bita
    Gugercin, Serkan
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4236 - 4241
  • [6] Linear Tracking MPC for Nonlinear Systems-Part II: The Data-Driven Case
    Berberich, Julian
    Koehler, Johannes
    Mueller, Matthias A.
    Allgoewer, Frank
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (09) : 4406 - 4421
  • [7] Robust MPC for constrained uncertain systems with data-driven improvement
    Yang, Lingyi
    Li, Dewei
    Lu, Jianbo
    Xi, Yugeng
    Li, Bin
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 3623 - 3628
  • [8] Data-driven distributed MPC of dynamically coupled linear systems
    Koehler, Matthias
    Berberich, Julian
    Mueller, Matthias A.
    Allgoewer, Frank
    IFAC PAPERSONLINE, 2022, 55 (30): : 365 - 370
  • [9] Data-Driven Distributionally Robust MPC for Constrained Stochastic Systems
    Coppens, Peter
    Patrinos, Panagiotis
    IEEE Control Systems Letters, 2022, 6 : 1274 - 1279
  • [10] Data-Driven Distributionally Robust MPC for Constrained Stochastic Systems
    Coppens, Peter
    Patrinos, Panagiotis
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 1274 - 1279