Twisted conjugacy classes in unitriangular groups

被引:12
|
作者
Nasybullov, Timur [1 ]
机构
[1] KU Leuven KULAK, Dept Math, Etienne Sabbelaan 53, B-8500 Kortrijk, Belgium
基金
比利时弗兰德研究基金会;
关键词
R-INFINITY-PROPERTY;
D O I
10.1515/jgth-2018-0127
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an integral domain of characteristic zero. In this note we study the Reidemeister spectrum of the group UTn (R) of unitriangular matrices over R. We prove that if R+ is finitely generated and n > 2 vertical bar R*vertical bar, then UTn (R) possesses the R-infinity-property, i.e. the Reidemeister spectrum of UTn (R) contains only infinity, however, if n <= vertical bar R*vertical bar, then the Reidemeister spectrum of UTn (R) has nonempty intersection with N. If R is a field and n >= 3, then we prove that the Reidemeister spectrum of UTn (R) coincides with (1, infinity}, i.e. in this case UTn (R) does not possess the R-infinity-property.
引用
收藏
页码:253 / 266
页数:14
相关论文
共 50 条