Iterative Outlier Removal Clustering Based Time-Frequency-Spatial Feature Selection for Binary EEG Motor Imagery Decoding

被引:5
|
作者
Ma, Yue [1 ,2 ]
Wu, Xinyu [1 ,2 ]
Zheng, Liangsheng [1 ,2 ]
Lian, Pengchen [1 ,2 ]
Xiao, Yang [1 ,3 ]
Yi, Zhengkun [1 ,2 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Guangdong Prov Key Lab Robot & Intelligent Syst &, Shenzhen, Guangdong, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Chongqing 400065, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Feature extraction; Time-frequency analysis; Electroencephalography; Brain modeling; Optimization; Iterative decoding; Image segmentation; Electroencephalography (EEG); feature extraction (FE); feature selection (FS); motor imagery (MI); short-time Fourier transform (STFT); CLASSIFICATION; SYSTEM;
D O I
10.1109/TIM.2022.3193407
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electroencephalography (EEG)-based motor imagery (MI) brain-computer interface (BCI) is a bridge in the instruments of rehabilitation and motor assistance field to control external assist devices without external stimulation. Feature extraction (FE) is a key to improving the performance of EEG MI decoding. Existing FE methods usually extract single-domain features such as spatial, frequency features, or dual-domain features such as time-frequency features. However, the multidomains features which describe the intent more comprehensively are not simultaneously extracted. Therefore, inspired by short-time Fourier transform (STFT) and common spatial pattern (CSP) FE methods, a frequency-spatial-temporal multidomain (FSTMD) FE method is proposed. To solve the problem of the high dimensions of the FSTMD features, a feature selection (FS) method is designed. In the proposed FSTMD FE process, the STFT is employed to extract the time-frequency domain features first. Then, the time-frequency features of each channel are cascaded. After that, the cascaded features are divided according to time segments. At last, the covariance transform is performed for each time segment. Since the proposed features have a one-to-one correspondence with frequency, channel, and time, the extracted features have good interpretability. The proposed FS method selects the features in the frequency-spatial domain of each time segment based on mutual information and correlation metrics first and then selects the key time segment based on clustering with outlier removal. The performance of the proposed feature is verified in BCI Competition IV Dataset IIa and IIb. Compared to the CSP feature in the only spatial domain, the proposed feature has significantly lower deviation and slightly higher accuracy. The average recognition accuracy of the proposed MI decoding framework is 85.1% on the dataset IIb session 3, which is competitive compared with the state-of-the-art methods.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata
    Liu, Aiming
    Chen, Kun
    Liu, Quan
    Ai, Qingsong
    Xie, Yi
    Chen, Anqi
    SENSORS, 2017, 17 (11):
  • [32] Discriminative Feature Selection-Based Motor Imagery Classification Using EEG Signal
    Molla, Md Khademul Islam
    Al Shiam, Abdullah
    Islam, Md Rabiul
    Tanaka, Toshihisa
    IEEE ACCESS, 2020, 8 : 98255 - 98265
  • [33] Discriminative Feature Selection-Based Motor Imagery Classification Using EEG Signal
    Molla, Md. Khademul Islam
    Shiam, Abdullah Al
    Islam, Md. Rabiul
    Tanaka, Toshihisa
    IEEE Access, 2020, 8 : 98255 - 98265
  • [34] A Discriminative and Robust Feature Learning Approach for EEG-Based Motor Imagery Decoding (Student Abstract)
    Huang, Xiuyu
    Zhou, Nan
    Choi, Kup-Sze
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 12971 - 12972
  • [35] Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns
    Wang, T
    Deng, H
    He, B
    CLINICAL NEUROPHYSIOLOGY, 2004, 115 (12) : 2744 - 2753
  • [36] Attention-Based Multiscale Spatial-Temporal Convolutional Network for Motor Imagery EEG Decoding
    Zhang, Yu
    Li, Penghai
    Cheng, Longlong
    Li, Mingji
    Li, Hongji
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 2423 - 2434
  • [37] Time-frequency Selection in Two Bipolar Channels for Improving the Classification of Motor Imagery EEG
    Yang, Yuan
    Chevallier, Sylvain
    Wiart, Joe
    Bloch, Isabelle
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 2744 - 2747
  • [38] 3D convolutional neural network based on spatial-spectral feature pictures learning for decoding motor imagery EEG signal
    Li, Xiaoguang
    Chu, Yaqi
    Wu, Xuejian
    FRONTIERS IN NEUROROBOTICS, 2024, 18
  • [39] A Bacterial Foraging Optimization and Learning Automata Based Feature Selection for Motor Imagery EEG Classification
    Pal, Monalisa
    Bhattacharyya, Saugat
    Roy, Shounak
    Konar, Amit
    Tibarewala, D. N.
    Janarthanan, R.
    2014 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS (SPCOM), 2014,
  • [40] Feature Weighting and Regularization of Common Spatial Patterns in EEG-Based Motor Imagery BCI
    Mishuhina, Vasilisa
    Jiang, Xudong
    IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (06) : 783 - 787