CrTe as a versatile thermoelectromagnetic multi-functional material

被引:14
|
作者
Gong, Yue [1 ]
Sun, Jinchang [1 ,2 ]
Hu, Weiwei [1 ]
Li, Songlin [1 ]
Xu, Weibin [1 ]
Tan, Gangjian [1 ]
Tang, Xinfeng [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Int Sch Mat Sci & Engn, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSPORT; CR3TE4;
D O I
10.1063/5.0080124
中图分类号
O59 [应用物理学];
学科分类号
摘要
Materials with large magnetocaloric effects and high thermoelectric performance are of fundamental interest to all-solid-state refrigeration technology. Herein, we report CrTe-based ferromagnetic semi-metals as an exceptional example showing both desirable magnetic entropy change (-& UDelta;S-M) and promising thermoelectric figure of merit (ZT) near room temperature. A proper amount (9 mol. %) of Cr deficiency is found to stabilize the hexagonal structure of CrTe. Cr0.91Te displays a maximum -& UDelta;S-M value of & SIM;2.4 J/Kg & BULL;K under an applied magnetic field of 5 T around its Curie temperature (T-C) of 332 K and a strikingly large ZT value of 1.2 x 10(-2) at 300 K (two to four orders of magnitude larger than any other ferromagnetic compounds reported so far). The exceptional thermoelectric performance in such a semi-metal is believed to originate from the inherently strong electron-phonon-spin interactions: magnon-drag effect mediated Seebeck coefficient enhancement and phonon-spin coupling induced thermal conductivity reduction. The introduction of antiferromagnetic CrSb not only systematically decreases T-C of Cr0.91Te down to or even below room temperature but also boosts its thermoelectromagnetic properties. Specifically, Cr0.91Te0.9Sb0.1 obtains a maximum -& UDelta;S-M value of & SIM;2.6 J/Kg & BULL;K @ 5 T around T-C = 315 K and a ZT value of 2.0 x 10(-2) at 300 K, which represent 8% and 75% improvement over pristine Cr0.91Te, respectively. This research highlights the possibility of exploring ferromagnetic semi-metals as advanced thermoelectromagnetic multi-functional materials.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Multi-functional sandwich composites
    Vaidya, UK
    SMART MATERIALS, STRUCTURES, AND SYSTEM, PTS 1 AND 2, 2003, 5062 : 621 - 628
  • [42] Multi-functional materials with polarization
    Viehland, D.
    Zhai, Junyi
    Dong, S.
    Li, J. F.
    2007 SIXTEENTH IEEE INTERNATIONAL SYMPOSIUM ON THE APPLICATIONS OF FERROELECTRICS, VOLS 1 AND 2, 2007, : 404 - 405
  • [43] Hitachi multi-functional mounter
    Honma, Kazuo
    Robot Tokyo, 1995, (107): : 62 - 69
  • [44] Multi-functional "hot" room
    Dziadyk, A
    AMERICAN BEE JOURNAL, 2003, 143 (10): : 769 - 770
  • [45] Muscle spindles are multi-functional
    Windhorst, Uwe
    BRAIN RESEARCH BULLETIN, 2008, 75 (05) : 507 - 508
  • [46] Nebulin, a multi-functional giant
    Chu, Miensheng
    Gregorio, Carol C.
    Pappas, Christopher T.
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2016, 219 (02): : 146 - 152
  • [47] Multi-functional intelligent robot
    Lin, C. Y.
    Tseng, C. K.
    Jo, P. C.
    2006 IEEE CONFERENCE ON ROBOTICS, AUTOMATION AND MECHATRONICS, VOLS 1 AND 2, 2006, : 409 - +
  • [48] MULTI-FUNCTIONAL MARBLE TABLES
    不详
    DOMUS, 1975, (548): : 47 - 47
  • [49] Multi-functional intelligent UPS
    Iida, H
    Kominami, T
    Kimura, T
    Sato, T
    Yoshizawa, S
    NEC RESEARCH & DEVELOPMENT, 1997, 38 (04): : 425 - 431
  • [50] A multi-functional plasmonic biosensor
    Chang, Yun-Tzu
    Lai, Yueh-Chun
    Li, Chung-Tien
    Chen, Cheng-Kuang
    Yen, Ta-Jen
    OPTICS EXPRESS, 2010, 18 (09): : 9561 - 9569