Local Plasmon Phase Delay Effect in Plasmon-Exciton Coupling

被引:0
|
作者
Hu, Aiqin [1 ,2 ]
Zhang, Weidong [1 ,2 ]
Liu, Wenjing [1 ,2 ]
Jiang, Hong [1 ,2 ]
Ye, Lulu [1 ,2 ]
Gu, Ying [1 ,2 ,3 ,4 ]
Xue, Zhaohang [1 ,2 ]
Lin, Hai [1 ,2 ]
Tang, Jinglin [1 ,2 ]
Gong, Qihuang [1 ,2 ,3 ,4 ]
Lu, Guowei [1 ,2 ,3 ,4 ]
机构
[1] Peking Univ, Sch Phys, Frontiers Sci Ctr Nanooptoelect, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[4] Peking Univ, Yangtze Delta Inst Optoelect, Nantong 226010, Jiangsu, Peoples R China
来源
ADVANCED OPTICAL MATERIALS | 2022年 / 10卷 / 09期
基金
中国国家自然科学基金;
关键词
exciton-plasmon coupling; excitons; phase delay; plasmonic modes; ROOM-TEMPERATURE; FANO RESONANCES; NANOROD; NANOSTRUCTURES; ABSORPTION;
D O I
10.1002/adom.202102380
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Manipulating plasmon-exciton coupling is a pivotal desire for many potential applications. Here, it is found that the plasmonic phase delay can modulate the interference-induced asymmetrical spectrum line shape of the plasmon-exciton coupling system considerably. The phase effect in a hybrid system consisting of monolayer WSe2 and an individual gold nanorod is demonstrated. The phase delay can modulate the relative intensities of the coupling modes but not the splitting energy, effective in both weak and strong coupling regimes. There is an excellent agreement between the numerical calculations and the experimental results. The findings reveal that the local phase delay can act as an effective way to manipulate plasmon-exciton coupling properties at the nanoscale.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Ultrastrong plasmon-exciton coupling in metal nanoprisms with J-aggregates
    Balci, Sinan
    OPTICS LETTERS, 2013, 38 (21) : 4498 - 4501
  • [32] Plasmon-Exciton Coupling at Individual Porphyrin-Covered Silver Clusters
    Stallberg, Klaus
    Lilienkamp, Gerhard
    Daum, Winfried
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (25): : 13833 - 13839
  • [33] Tuning nanoscale plasmon-exciton coupling via chemical interface damping
    Dey, Jyotirban
    Virdi, Alisha
    Chandra, Manabendra
    NANOSCALE, 2023, 15 (44) : 17879 - 17888
  • [34] Exploring plasmon-exciton coupling at the surface of TiO2 nanorods
    DeLacy, Brendan
    McCarthy, Danielle
    Zander, Zachary
    Rao, Yi
    Fang, Hui
    Dai, Hai-Lung
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [35] Plasmon-Exciton Coupling in Photosystem I Based Biohybrid Photoelectrochemical Cells
    Zeng, Zheng
    Mabe, Taylor
    Zhang, Wendi
    Bagra, Bhawna
    Ji, Zuowei
    Yin, Ziyu
    Allado, Kokougan
    Wei, Jianjun
    ACS APPLIED BIO MATERIALS, 2018, 1 (03) : 802 - 807
  • [36] Numerical Study of Novel Ratiometric Sensors Based on Plasmon-Exciton Coupling
    Tang, Yuankai
    Yu, Xiantong
    Pan, Haifeng
    Chen, Jinquan
    Audit, Benjamin
    Argoul, Francoise
    Zhang, Sanjun
    Xu, Jianhua
    APPLIED SPECTROSCOPY, 2017, 71 (10) : 2377 - 2384
  • [37] Plasmon-exciton coupling in nanostructured metal-semiconductor composite films
    Savchuk, Viktoriia V.
    Gamernyk, Roman V.
    Virt, Ihor S.
    Malynych, Serhiy Z.
    Pinchuk, Anatoliy O.
    AIP ADVANCES, 2019, 9 (04)
  • [38] Particularities of surface plasmon-exciton strong coupling with large Rabi splitting
    Symonds, C.
    Bonnand, C.
    Plenet, J. C.
    Brehier, A.
    Parashkov, R.
    Lauret, J. S.
    Deleporte, E.
    Bellessa, J.
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [39] On the Plasmon-Exciton Coupling in a Metal/Dielectric CTF/TMD Trilayer Structure
    Babaei, F.
    PLASMONICS, 2025, 20 (02) : 753 - 762
  • [40] Tunable Multimode Plasmon-Exciton Coupling for Absorption-Induced Transparency and Strong Coupling
    Li, Xiaomiao
    Liu, Famin
    Tian, Menghan
    Zhong, Xiaolan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (43): : 23888 - 23894