Local Plasmon Phase Delay Effect in Plasmon-Exciton Coupling

被引:0
|
作者
Hu, Aiqin [1 ,2 ]
Zhang, Weidong [1 ,2 ]
Liu, Wenjing [1 ,2 ]
Jiang, Hong [1 ,2 ]
Ye, Lulu [1 ,2 ]
Gu, Ying [1 ,2 ,3 ,4 ]
Xue, Zhaohang [1 ,2 ]
Lin, Hai [1 ,2 ]
Tang, Jinglin [1 ,2 ]
Gong, Qihuang [1 ,2 ,3 ,4 ]
Lu, Guowei [1 ,2 ,3 ,4 ]
机构
[1] Peking Univ, Sch Phys, Frontiers Sci Ctr Nanooptoelect, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[4] Peking Univ, Yangtze Delta Inst Optoelect, Nantong 226010, Jiangsu, Peoples R China
来源
ADVANCED OPTICAL MATERIALS | 2022年 / 10卷 / 09期
基金
中国国家自然科学基金;
关键词
exciton-plasmon coupling; excitons; phase delay; plasmonic modes; ROOM-TEMPERATURE; FANO RESONANCES; NANOROD; NANOSTRUCTURES; ABSORPTION;
D O I
10.1002/adom.202102380
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Manipulating plasmon-exciton coupling is a pivotal desire for many potential applications. Here, it is found that the plasmonic phase delay can modulate the interference-induced asymmetrical spectrum line shape of the plasmon-exciton coupling system considerably. The phase effect in a hybrid system consisting of monolayer WSe2 and an individual gold nanorod is demonstrated. The phase delay can modulate the relative intensities of the coupling modes but not the splitting energy, effective in both weak and strong coupling regimes. There is an excellent agreement between the numerical calculations and the experimental results. The findings reveal that the local phase delay can act as an effective way to manipulate plasmon-exciton coupling properties at the nanoscale.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Plasmon-Exciton Coupling Effect on Plasmon Damping
    Ye, Lulu
    Zhang, Weidong
    Hu, Aiqin
    Lin, Hai
    Tang, Jinglin
    Wang, Yunkun
    Pan, Chenxinyu
    Wang, Pan
    Guo, Xin
    Tong, Limin
    Gao, Yunan
    Gong, Qihuang
    Lu, Guowei
    ADVANCED PHOTONICS RESEARCH, 2022, 3 (04):
  • [2] Plasmon-exciton coupling
    Pelton, Matthew
    Sheldon, Matthew
    Khurgin, Jacob
    NANOPHOTONICS, 2019, 8 (04) : 513 - 516
  • [3] Plasmon-Exciton Coupling in Complex Systems
    Li, Xiaoguang
    Zhou, Li
    Hao, Zhonghua
    Wang, Qu-Quan
    ADVANCED OPTICAL MATERIALS, 2018, 6 (18):
  • [4] Plasmon-Exciton Coupling Using DNA Templates
    Roller, Eva-Maria
    Argyropoulos, Christos
    Hoegele, Alexander
    Liedl, Tim
    Pilo-Pais, Mauricio
    NANO LETTERS, 2016, 16 (09) : 5962 - 5966
  • [5] Plasmon-exciton coupling with colloidal metal nanoparticles
    Tao, Andrea
    Rodarte, Andrea
    Marin, Brandon
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [6] Plasmon-exciton coupling for nanophotonic sensing on chip
    Dong, Jun
    Cao, Yi
    Han, Qingyan
    Wang, Yongkai
    Qi, Minghan
    Zhang, Wenwen
    Qiao, Lin
    Qi, Jianxia
    Gao, Wei
    OPTICS EXPRESS, 2020, 28 (14): : 20817 - 20829
  • [7] Plasmon-Exciton Interactions: Spontaneous Emission and Strong Coupling
    Wei, Hong
    Yan, Xiaohong
    Niu, Yijie
    Li, Qiang
    Jia, Zhili
    Xu, Hongxing
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (51)
  • [8] Size Dependence of the Coupling Strength in Plasmon-Exciton Nanoparticles
    Stete, Felix
    Schossau, Phillip
    Koopman, Wouter
    Bargheer, Matias
    QUANTUM NANO-PHOTONICS, 2018, : 381 - 383
  • [9] Plasmon-Exciton Coupling Interaction for Surface Catalytic Reactions
    Wang, Jingang
    Lin, Weihua
    Xu, Xuefeng
    Ma, Fengcai
    Sun, Mengtao
    CHEMICAL RECORD, 2018, 18 (05): : 481 - 490
  • [10] Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping
    Balci, Sinan
    Kocabas, Coskun
    Ates, Simge
    Karademir, Ertugrul
    Salihoglu, Omer
    Aydinli, Atilla
    PHYSICAL REVIEW B, 2012, 86 (23):