Introducing PROFESS 3.0: An advanced program for orbital-free density functional theory molecular dynamics simulations

被引:67
|
作者
Chen, Mohan [1 ]
Xia, Junchao [1 ]
Huang, Chen [2 ]
Dieterich, Johannes M. [1 ]
Hung, Linda [3 ]
Shin, Ilgyou [4 ]
Carter, Emily A. [1 ,3 ,5 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[4] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[5] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08544 USA
关键词
Orbital-free density functional theory; Kinetic energy density functional; First-principles methods; Electronic structure; Molecular dynamics;
D O I
10.1016/j.cpc.2014.12.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Orbital-free density functional theory (OFDFT) is a linear-scaling first-principles quantum mechanics method used to calculate the ground-state energy of a given system. Here we present a new version of PRinceton Orbital-Free Electronic Structure Software (PROFESS) with new features. First, PROFESS 3.0 provides a set of new kinetic energy density functionals (KEDFs) which are designed to model semiconductors or transition metals. Specifically, PROFESS 3.0 includes the Huang-Carter (HC) KEDF [1], a density decomposition method with fixed localized electronic density [2], the Wang-Govind-Carter (WGC) decomposition KEDF [3], and the Enhanced von Weizsacker (EvW)-WGC KEDF [4]. Other major new functions are included, such as molecular dynamics with different statistical mechanical ensembles and spin-polarized density optimizers.
引用
收藏
页码:228 / 230
页数:3
相关论文
共 50 条
  • [31] Recent advancements and challenges in orbital-free density functional theory
    Xu, Qiang
    Ma, Cheng
    Mi, Wenhui
    Wang, Yanchao
    Ma, Yanming
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2024, 14 (03)
  • [32] Random Structure Searching with Orbital-Free Density Functional Theory
    Witt, William C.
    Shires, Benjamin W. B.
    Tan, Chuin Wei
    Jankowski, Wojciech J.
    Pickard, Chris J.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 125 (07): : 1650 - 1660
  • [33] Orbital-free density functional theory simulation of collective dynamics coupling in liquid Sn
    del Rio, Beatriz G.
    Chen, Mohan
    Gonzalez, Luis E.
    Carter, Emily A.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (09):
  • [34] Orbital-free density functional theory for covalent and metallic materials
    Carter, Emily A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [35] Augmented Lagrangian formulation of orbital-free density functional theory
    Suryanarayana, Phanish
    Phanish, Deepa
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 275 : 524 - 538
  • [36] Effective Wang-Teter kernels for improved orbital-free density functional theory simulations
    Rios-Vargas, Valeria
    Shao, Xuecheng
    Trickey, S. B.
    Pavanello, Michele
    PHYSICAL REVIEW B, 2024, 110 (08)
  • [37] Orbital-free density-functional theory for metal slabs
    Horowitz, C. M.
    Proetto, C. R.
    Pitarke, J. M.
    JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (16):
  • [38] Can orbital-free density functional theory simulate molecules?
    Xia, Junchao
    Huang, Chen
    Shin, Ilgyou
    Carter, Emily A.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (08):
  • [40] Leveraging normalizing flows for orbital-free density functional theory
    de Camargo, Alexandre
    Chen, Ricky T. Q.
    Vargas-Hernandez, Rodrigo A.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (03):