Multi-step learning rule for recurrent neural models:: An application to time series forecasting

被引:17
|
作者
Galván, IM [1 ]
Isasi, P [1 ]
机构
[1] Univ Carlos III Madrid, Dept Comp Sci, Madrid 28911, Spain
关键词
multi-step prediction; neural networks; time series; time series modelling;
D O I
10.1023/A:1011324221407
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-step prediction is a difficult task that has attracted increasing interest in recent years. It tries to achieve predictions several steps ahead into the future starting from current information. The interest in this work is the development of nonlinear neural models for the purpose of building multi-step time series prediction schemes. In that context, the most popular neural models are based on the traditional feedforward neural networks. However, this kind of model may present some disadvantages when a long-term prediction problem is formulated because they are trained to predict only the next sampling time. In this paper, a neural model based on a partially recurrent neural network is proposed as a better alternative. For the recurrent model, a learning phase with the purpose of long-term prediction is imposed, which allows to obtain better predictions of time series in the future. In order to validate the performance of the recurrent neural model to predict the dynamic behaviour of the series in the future, three different data time series have been used as study cases. An artificial data time series, the logistic map, and two real time series, sunspots and laser data. Models based on feedforward neural networks have also been used and compared against the proposed model. The results suggest than the recurrent model can help in improving the prediction accuracy.
引用
收藏
页码:115 / 133
页数:19
相关论文
共 50 条
  • [41] Adaptive Conformal Inference for Multi-Step Ahead Time-Series Forecasting Online
    Szabadvary, Johan Hallberg
    13TH SYMPOSIUM ON CONFORMAL AND PROBABILISTIC PREDICTION WITH APPLICATIONS, 2024, 230 : 250 - 263
  • [42] A general framework for multi-step ahead adaptive conformal heteroscedastic time series forecasting
    Sousa, Martim
    Tome, Ana Maria
    Moreira, Jose
    NEUROCOMPUTING, 2024, 608
  • [43] Multi-step time series analysis and forecasting strategy using ARIMA and evolutionary algorithms
    Kumar R.
    Kumar P.
    Kumar Y.
    International Journal of Information Technology, 2022, 14 (1) : 359 - 373
  • [44] Multi-step Ahead Urban Water Demand Forecasting Using Deep Learning Models
    Sahoo B.B.
    Panigrahi B.
    Nanda T.
    Tiwari M.K.
    Sankalp S.
    SN Computer Science, 4 (6)
  • [45] Multivariate Multi-step Deep Learning Time Series Approach in Forecasting Parkinson's Disease Future Severity Progression
    Ismail, Nur Hafieza
    Du, Mengnan
    Martinez, Diego
    He, Zhe
    ACM-BCB'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, 2019, : 383 - 389
  • [46] Multi-step estimation for forecasting
    Clements, MP
    Hendry, DF
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 1996, 58 (04) : 657 - +
  • [47] A note on multi-step forecasting with functional coefficient autoregressive models
    Harvill, JL
    Ray, BK
    INTERNATIONAL JOURNAL OF FORECASTING, 2005, 21 (04) : 717 - 727
  • [48] Prediction of global trade network evolution with uncertain multi-step time series forecasting method
    Chen, Jinran
    FUZZY OPTIMIZATION AND DECISION MAKING, 2024, 23 (03) : 387 - 414
  • [49] Multi-Step Forecasting of Meteorological Time Series Using CNN-LSTM with Decomposition Methods
    Coutinho, Elua Ramos
    Madeira, Jonni G. F.
    Borges, Derick G. F.
    Springer, Marcus V.
    de Oliveira, Elizabeth M.
    Coutinho, Alvaro L. G. A.
    WATER RESOURCES MANAGEMENT, 2025,
  • [50] A novel spark-based multi-step forecasting algorithm for big data time series
    Galicia, A.
    Torres, J. F.
    Martinez-Alvarez, F.
    Troncoso, A.
    INFORMATION SCIENCES, 2018, 467 : 800 - 818