On the 'optimal' density power divergence tuning parameter

被引:43
|
作者
Basak, Sancharee [1 ]
Basu, Ayanendranath [1 ]
Jones, M. C. [2 ]
机构
[1] Indian Stat Inst, Interdisciplinary Stat Res Unit, 203 BT Rd, Kolkata 700108, India
[2] Open Univ, Sch Math & Stat, Milton Keynes, Bucks, England
关键词
Optimal tuning parameter; pilot estimator; summed mean square error; one-step Warwick-Jones algorithm; iterated Warwick-Jones algorithm; ROBUST ESTIMATION;
D O I
10.1080/02664763.2020.1736524
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The density power divergence, indexed by a single tuning parameter alpha, has proved to be a very useful tool in minimum distance inference. The family of density power divergences provides a generalized estimation scheme which includes likelihood-based procedures (represented by choice for the tuning parameter) as a special case. However, under data contamination, this scheme provides several more stable choices for model fitting and analysis (provided by positive values for the tuning parameter alpha). As larger values of alpha necessarily lead to a drop in model efficiency, determining the optimal value of alpha to provide the best compromise between model-efficiency and stability against data contamination in any real situation is a major challenge. In this paper, we provide a refinement of an existing technique with the aim of eliminating the dependence of the procedure on an initial pilot estimator. Numerical evidence is provided to demonstrate the very good performance of the method. Our technique has a general flavour, and we expect that similar tuning parameter selection algorithms will work well for other M-estimators, or any robust procedure that depends on the choice of a tuning parameter.
引用
收藏
页码:536 / 556
页数:21
相关论文
共 50 条
  • [41] ON THE OPTIMAL TUNING OF A ROBUST CONTROLLER FOR PARABOLIC DISTRIBUTED PARAMETER-SYSTEMS
    POHJOLAINEN, S
    AUTOMATICA, 1987, 23 (06) : 719 - 728
  • [42] Parameter Tuning for Optimal Control of Switched Systems With Applications in Hypersonic Vehicles
    Yin, Shunan
    Rai, Ayush
    Mou, Shaoshuai
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 3063 - 3068
  • [43] Optimal Tuning of Power System Stabilizers by Probability Method
    Thanpisit, Korakot
    Ngamroo, Issarachai
    Nakawiro, Worawat
    2016 13TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON), 2016,
  • [44] Automatic Smith-predictor tuning using optimal parameter mismatch
    Huang, JJ
    DeBra, DB
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2002, 10 (03) : 447 - 459
  • [45] Parameter Ranges for Robust Gain Tuning of Power Systems Stabilizers
    de Oliveira, R. V.
    Ramos, R. A.
    Bretas, N. G.
    2011 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING, 2011,
  • [46] Parameter tuning of power system stabilizer using eigenvalue sensitivity
    Sumina, Damir
    Bulic, Neven
    Miskovic, Mato
    ELECTRIC POWER SYSTEMS RESEARCH, 2011, 81 (12) : 2171 - 2177
  • [47] A Tool for Optimal PSS Tuning for the Colombian Power System
    Castrillon, N. J.
    Sanchez, H. M.
    Perez, J. A.
    2014 IEEE PES T&D CONFERENCE AND EXPOSITION, 2014,
  • [48] Minimum density power divergence estimator for Poisson autoregressive models
    Kang, Jiwon
    Lee, Sangyeol
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 80 : 44 - 56
  • [49] Active learning for noisy oracle via density power divergence
    Sogawa, Yasuhiro
    Ueno, Tsuyoshi
    Kawahara, Yoshinobu
    Washio, Takashi
    NEURAL NETWORKS, 2013, 46 : 133 - 143
  • [50] Robust Principal Component Analysis using Density Power Divergence
    Roy, Subhrajyoty
    Basu, Ayanendranath
    Ghosh, Abhik
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25