Glassy Li metal anode for high-performance rechargeable Li batteries

被引:220
|
作者
Wang, Xuefeng [1 ]
Pawar, Gorakh [2 ]
Li, Yejing [1 ]
Ren, Xiaodi [3 ]
Zhang, Minghao [1 ]
Lu, Bingyu [1 ]
Banerjee, Abhik [1 ]
Liu, Ping [1 ]
Dufek, Eric J. [4 ]
Zhang, Ji-Guang [3 ]
Xiao, Jie [3 ]
Liu, Jun [3 ]
Meng, Ying Shirley [1 ]
Liaw, Boryann [4 ]
机构
[1] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
[2] Idaho Natl Lab, Dept Mat Sci & Engn, Idaho Falls, ID USA
[3] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA
[4] Idaho Natl Lab, Dept Energy Storage & Adv Transportat, Idaho Falls, ID 83401 USA
基金
美国国家科学基金会;
关键词
ELECTRON-MICROSCOPY; LITHIUM METAL; DENDRITIC GROWTH; ELECTRODEPOSITION; DISSOLUTION; NUCLEATION; INTERFACES; REAXFF; FIELD;
D O I
10.1038/s41563-020-0729-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal is considered an ideal anode for high-energy rechargeable lithium batteries, but understanding its nucleation and growth at the nanoscale remains challenging. Using cryogenic transmission electron microscopy and simulations, a structural and morphological evolution scenario for Li deposits is proposed. Lithium metal has been considered an ideal anode for high-energy rechargeable Li batteries, although its nucleation and growth process remains mysterious, especially at the nanoscale. Here, cryogenic transmission electron microscopy was used to reveal the evolving nanostructure of Li metal deposits at various transient states in the nucleation and growth process, in which a disorder-order phase transition was observed as a function of current density and deposition time. The atomic interaction over wide spatial and temporal scales was depicted by reactive molecular dynamics simulations to assist in understanding the kinetics. Compared to crystalline Li, glassy Li outperforms in electrochemical reversibility, and it has a desired structure for high-energy rechargeable Li batteries. Our findings correlate the crystallinity of the nuclei with the subsequent growth of the nanostructure and morphology, and provide strategies to control and shape the mesostructure of Li metal to achieve high performance in rechargeable Li batteries.
引用
收藏
页码:1339 / +
页数:12
相关论文
共 50 条
  • [41] High-Performance Thick Cathode Based on Polyhydroxyalkanoate Binder for Li Metal Batteries
    Kang, Dong Hyuk
    Park, Minhyuck
    Lee, Jeonghun
    Kim, Chan Yeol
    Park, Jimin
    Lee, Youn-Ki
    Hyun, Jong Chan
    Ha, Son
    Kwak, Jin Hwan
    Yoon, Juhee
    Kim, Hyemin
    Kim, Hyun Soo
    Kim, Do Hyun
    Kim, Sangmin
    Park, Ji Yong
    Jang, Robin
    Yang, Seung Jae
    Lim, Hee-Dae
    Cho, Se Youn
    Jin, Hyoung-Joon
    Lee, Seungjin
    Hwang, Yunil
    Yun, Young Soo
    ADVANCED FIBER MATERIALS, 2024, 6 (01) : 214 - 228
  • [42] An asymmetric quasi-solid electrolyte for high-performance Li metal batteries
    Wang, Qian
    Wang, Hangchao
    Liu, Yong
    Wu, Kai
    Liu, Wen
    Zhou, Henghui
    CHEMICAL COMMUNICATIONS, 2020, 56 (52) : 7195 - 7198
  • [43] High-Performance Thick Cathode Based on Polyhydroxyalkanoate Binder for Li Metal Batteries
    Dong Hyuk Kang
    Minhyuck Park
    Jeonghun Lee
    Chan Yeol Kim
    Jimin Park
    Youn-Ki Lee
    Jong Chan Hyun
    Son Ha
    Jin Hwan Kwak
    Juhee Yoon
    Hyemin Kim
    Hyun Soo Kim
    Do Hyun Kim
    Sangmin Kim
    Ji Yong Park
    Robin Jang
    Seung Jae Yang
    Hee-Dae Lim
    Se Youn Cho
    Hyoung-Joon Jin
    Seungjin Lee
    Yunil Hwang
    Young Soo Yun
    Advanced Fiber Materials, 2024, 6 : 214 - 228
  • [44] Metal Chalcogenides with Heterostructures for High-Performance Rechargeable Batteries
    Li, Yu
    Wu, Feng
    Qian, Ji
    Zhang, Minghao
    Yuan, Yanxian
    Bai, Ying
    Wu, Chuan
    SMALL SCIENCE, 2021, 1 (09):
  • [45] Dual-Solvent Li-Ion Solvation Enables High-Performance Li-Metal Batteries
    Wang, Hansen
    Yu, Zhiao
    Kong, Xian
    Huang, William
    Zhang, Zewen
    Mackanic, David G.
    Huang, Xinyi
    Qin, Jian
    Bao, Zhenan
    Cui, Yi
    ADVANCED MATERIALS, 2021, 33 (25)
  • [46] Non-Flammable Ester Electrolyte with Boosted Stability Against Li for High-Performance Li metal Batteries
    Wang, Zhijie
    Wang, Yanyan
    Li, Baohua
    Bouwer, James C.
    Davey, Kenneth
    Lu, Jun
    Guo, Zaiping
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (41)
  • [47] Manganese monoxide/titanium nitride composite as high performance anode material for rechargeable Li-ion batteries
    Xu, Gaojie
    Zhang, Lixue
    Guo, Chaowei
    Gu, Lin
    Wang, Xiaogang
    Han, Pengxian
    Zhang, Kejun
    Zhang, Chuanjian
    Cui, Guanglei
    ELECTROCHIMICA ACTA, 2012, 85 : 345 - 351
  • [48] Integrated reduced graphene oxide multilayer/Li composite anode for rechargeable lithium metal batteries
    Zhang, Yi-jun
    Xia, Xin-hui
    Wang, Dong-huang
    Wang, Xiu-li
    Gu, Chang-dong
    Tu, Jiang-ping
    RSC ADVANCES, 2016, 6 (14): : 11657 - 11664
  • [49] Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries
    Jie, Yulin
    Ren, Xiaodi
    Cao, Ruiguo
    Cai, Wenbin
    Jiao, Shuhong
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (25)
  • [50] Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: A review of current advances
    Wu, Baolin
    Chen, Chunguang
    Raijmakers, Luc H. J.
    Liu, Jin
    Danilov, Dmitri L.
    Notten, Peter H. L.
    ENERGY STORAGE MATERIALS, 2023, 57 : 508 - 539