Comparative investigation on using cryogenic machining in CNC milling of Ti-6Al-4V titanium alloy

被引:60
|
作者
Shokrani, Alborz [1 ]
Dhokia, Vimal [1 ]
Newman, Stephen T. [1 ]
机构
[1] Univ Bath, Dept Mech Engn, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
CNC milling; cryogenic end milling; cryogenic machining; machinability; titanium; TOOL-WEAR; SURFACE INTEGRITY; OPTIMIZATION; MQL; DRY;
D O I
10.1080/10910344.2016.1191953
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ti-6Al-4V titanium alloy is one of the most important materials in industry, 80% of which is used in aerospace industry. Titanium alloys are also notoriously difficult-to-machine materials owing to their unique material properties imposing a major bottleneck in manufacturing systems. Cryogenic cooling has been acknowledged as an alternative technique in machining to improve the machinability of different materials. Although milling is considered to be the major machining operation for the manufacture of titanium components in aerospace industries, studies in cryogenic machining of titanium alloys are predominantly concentrated on turning operations. To address this gap, this article provides an investigation on the viability of cryogenic cooling in CNC end-milling of aerospace-grade Ti-6Al-4V alloy using liquid nitrogen in comparison with traditional machining environments. A series of machining experiments were conducted and surface roughness, tool life, power consumption, and specific machining energy were investigated for cryogenic milling as opposed to conventional dry and flood cooling. Analysis revealed that cryogenic machining using liquid nitrogen has the potential to significantly improve the machinability of Ti-6Al-4V alloy in CNC end-milling using solid carbide cutting tools and result in a paradigm shift in machining of titanium products. The analysis demonstrated that cryogenic cooling has resulted in almost three times increased tool life and the surface roughness was reduced by 40% in comparison with flood cooling.
引用
收藏
页码:475 / 494
页数:20
相关论文
共 50 条
  • [1] Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti-6Al-4V titanium alloy
    Shokrani, Alborz
    Dhokia, Vimal
    Newman, Stephen T.
    JOURNAL OF MANUFACTURING PROCESSES, 2016, 21 : 172 - 179
  • [2] Energy conscious cryogenic machining of Ti-6Al-4V titanium alloy
    Shokrani, Alborz
    Dhokia, Vimal
    Newman, Stephen T.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2018, 232 (10) : 1690 - 1706
  • [3] A New Cutting Tool Design for Cryogenic Machining of Ti-6Al-4V Titanium Alloy
    Shokrani, Alborz
    Newman, Stephen T.
    MATERIALS, 2019, 12 (03)
  • [4] Investigation of wear during cryogenic machining of Ti-6Al-4V
    Gutzeit K.
    Basten S.
    Kirsch B.
    Aurich J.C.
    ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2021, 116 (09): : 599 - 602
  • [5] Grinding titanium alloy (Ti-6Al-4V) by cryogenic cooling
    Zhu, B
    Zhang, FH
    Niu, H
    ADVANCES IN ABRASIVE PROCESSES, 2001, 202-2 : 309 - 314
  • [6] Machining of Titanium Alloy Ti-6Al-4V for Biomedical Applications
    Balazic, Matej
    Kopac, Janez
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2010, 56 (03): : 202 - 206
  • [7] Electrical discharge machining of titanium alloy (Ti-6Al-4V)
    Hascalik, Ahmet
    Caydas, Ula
    APPLIED SURFACE SCIENCE, 2007, 253 (22) : 9007 - 9016
  • [8] Machining of Titanium Alloy (Ti-6Al-4V)-Theory to Application
    Pramanik, Alokesh
    Littlefair, Guy
    MACHINING SCIENCE AND TECHNOLOGY, 2015, 19 (01) : 1 - 49
  • [9] Hybrid cryogenic MQL for improving tool life in machining of Ti-6Al-4V titanium alloy
    Shokrani, Alborz
    Al-Samarrai, Ihsan
    Newman, Stephen T.
    JOURNAL OF MANUFACTURING PROCESSES, 2019, 43 : 229 - 243
  • [10] Machining Ti-6Al-4V alloy with cryogenic compressed air cooling
    Sun, S.
    Brandt, M.
    Dargusch, M. S.
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2010, 50 (11): : 933 - 942