Local membrane length conservation in two-dimensional vesicle simulation using a multicomponent lattice Boltzmann equation method

被引:4
|
作者
Halliday, I. [1 ]
Lishchuk, S. V. [1 ]
Spencer, T. J. [1 ]
Pontrelli, G. [2 ]
Evans, P. C. [3 ,4 ]
机构
[1] Sheffield Hallam Univ, Mat & Engn Res Inst, Howard St, Sheffield S1 1WB, S Yorkshire, England
[2] CNR, Ist Applicaz Calcolo, Via Taurini 19, I-00185 Rome, Italy
[3] Univ Sheffield, Sch Med, Dept Cardiovasc Sci, Beech Hill Rd, Sheffield S10 2RX, S Yorkshire, England
[4] Univ Sheffield, Sch Med, Insigneo Inst Sil Med, Beech Hill Rd, Sheffield S10 2RX, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
RED-BLOOD-CELLS; FLOW; DYNAMICS;
D O I
10.1103/PhysRevE.94.023306
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a method for applying a class of velocity-dependent forces within a multicomponent lattice Boltzmann equation simulation that is designed to recover continuum regime incompressible hydrodynamics. This method is applied to the problem, in two dimensions, of constraining to uniformity the tangential velocity of a vesicle membrane implemented within a recent multicomponent lattice Boltzmann simulation method, which avoids the use of Lagrangian boundary tracers. The constraint of uniform tangential velocity is carried by an additional contribution to an immersed boundary force, which we derive here from physical arguments. The result of this enhanced immersed boundary force is to apply a physically appropriate boundary condition at the interface between separated lattice fluids, defined as that region over which the phase-field varies most rapidly. Data from this enhanced vesicle boundary method are in agreement with other data obtained using related methods [e.g., T. Kruger, S. Frijters, F. Gunther, B. Kaoui, and J. Harting, Eur. Phys. J. 222, 177 (2013)] and underscore the importance of a correct vesicle membrane condition.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Simulation of the two-dimensional flow of the initiation channel of the Itaipu hydroelectric power plant by the lattice Boltzmann method
    Cargnelutti, J.
    Galina, V.
    Kaviski, E.
    Gramani, L. M.
    Lobeiro, A. M.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2018, 34 (01):
  • [42] Lattice Boltzmann simulation of fluid flows in two-dimensional channel with complex geometries
    闻炳海
    刘海燕
    张超英
    王强
    Chinese Physics B, 2009, 18 (10) : 4353 - 4359
  • [43] Lattice-Boltzmann simulation of flow through two-dimensional particle sediments
    Quispe, JR
    Toledo, PG
    INTERNATIONAL JOURNAL OF MINERAL PROCESSING, 2004, 73 (2-4) : 91 - 102
  • [44] Lattice Boltzmann simulation of fluid flows in two-dimensional channel with complex geometries
    Wen Bing-Hai
    Liu Hai-Yan
    Zhang Chao-Ying
    Wang Qiang
    CHINESE PHYSICS B, 2009, 18 (10) : 4353 - 4359
  • [45] Lattice Boltzmann simulation on particle suspensions in a two-dimensional symmetric stenotic artery
    Li, HB
    Fang, HP
    Lin, ZF
    Xu, SX
    Chen, SY
    PHYSICAL REVIEW E, 2004, 69 (03) : 031919 - 1
  • [46] Numerical simulation of two dimensional free-surface movement using Lattice Boltzmann Method
    Jung, Rho-Taek
    Hasan, Md Kamrul
    OCEANS, 2012 - YEOSU, 2012,
  • [47] Two-Dimensional Simulations of Turbulent Flow Past a Row of Cylinders using Lattice Boltzmann Method
    Wei, Yi-Kun
    Hu, Xu-Qu
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2017, 14 (01)
  • [48] Simulation of conductive fins effect on mixed convection heat transfer in a two-dimensional inclined channel using the lattice Boltzmann method
    El Maghraoui, Molka
    Mohebbi, Rasul
    Sheremet, Mikhail
    Hazami, Majdi
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2024, 85 (07) : 1130 - 1156
  • [49] Two-dimensional simulation of intermediate-sized bubbles in low viscous liquids using counter diffusion lattice Boltzmann method
    Ryu, Seungyeob
    Kim, Youngin
    Kang, Hanok
    Kim, Keung Koo
    Ko, Sungho
    NUCLEAR ENGINEERING AND DESIGN, 2016, 305 : 547 - 558
  • [50] TVD finite point method for two-dimensional conservation equation
    Yin, Li
    Shen, Longjun
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (03) : 690 - 704