GAUSSIAN APPROXIMATIONS OF SMALL NOISE DIFFUSIONS IN KULLBACK-LEIBLER DIVERGENCE

被引:6
|
作者
Sanz-Alonso, Daniel [1 ]
Stuart, Andrew M. [1 ]
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Gaussian approximations; diffusion processes; small noise; Kullback-Leibler divergence;
D O I
10.4310/CMS.2017.v15.n7.a13
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Gaussian approximations to the distribution of a diffusion. The approximations are easy to compute: they are defined by two simple ordinary differential equations for the mean and the covariance. Time correlations can also be computed via solution of a linear stochastic differential equation. We show, using the Kullback-Leibler divergence, that the approximations are accurate in the small noise regime. An analogous discrete time setting is also studied. The results provide both theoretical support for the use of Gaussian processes in the approximation of diffusions, and methodological guidance in the construction of Gaussian approximations in applications.
引用
收藏
页码:2087 / 2097
页数:11
相关论文
共 50 条
  • [11] Nonparametric Estimation of Kullback-Leibler Divergence
    Zhang, Zhiyi
    Grabchak, Michael
    NEURAL COMPUTATION, 2014, 26 (11) : 2570 - 2593
  • [12] Use of Kullback-Leibler divergence for forgetting
    Karny, Miroslav
    Andrysek, Josef
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2009, 23 (10) : 961 - 975
  • [13] Kullback-Leibler divergence for evaluating bioequivalence
    Dragalin, V
    Fedorov, V
    Patterson, S
    Jones, B
    STATISTICS IN MEDICINE, 2003, 22 (06) : 913 - 930
  • [14] Statistical Estimation of the Kullback-Leibler Divergence
    Bulinski, Alexander
    Dimitrov, Denis
    MATHEMATICS, 2021, 9 (05) : 1 - 36
  • [15] Source Resolvability with Kullback-Leibler Divergence
    Nomura, Ryo
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 2042 - 2046
  • [16] Kullback-Leibler divergence: A quantile approach
    Sankaran, P. G.
    Sunoj, S. M.
    Nair, N. Unnikrishnan
    STATISTICS & PROBABILITY LETTERS, 2016, 111 : 72 - 79
  • [17] Abnormality detection based on the Kullback-Leibler divergence for generalized Gaussian data
    Xiong, Ying
    Jing, Yindi
    Chen, Tongwen
    CONTROL ENGINEERING PRACTICE, 2019, 85 : 257 - 270
  • [18] A decision cognizant Kullback-Leibler divergence
    Ponti, Moacir
    Kittler, Josef
    Riva, Mateus
    de Campos, Teofilo
    Zor, Cemre
    PATTERN RECOGNITION, 2017, 61 : 470 - 478
  • [19] The Kullback-Leibler divergence and nonnegative matrices
    Boche, Holger
    Stanczak, Slawomir
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) : 5539 - 5545
  • [20] AN INVOLUTION INEQUALITY FOR THE KULLBACK-LEIBLER DIVERGENCE
    Pinelis, Iosif
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (01): : 233 - 235