Webly-supervised learning for salient object detection

被引:20
|
作者
Luo, Ao [1 ]
Li, Xin [2 ]
Yang, Fan [2 ]
Jiao, Zhicheng [3 ]
Cheng, Hong [1 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu 611731, Peoples R China
[2] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
[3] Univ N Carolina, Chapel Hill, NC 27599 USA
关键词
Salient object detection; Webly-supervised learning; Deep learning; OPTIMIZATION; FRAMEWORK; FUSION;
D O I
10.1016/j.patcog.2020.107308
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
End-to-end training of a deep CNN-Based model for salient object detection usually requires a huge number of training samples with pixel-level annotations, which are costly and time-consuming to obtain. In this paper, we propose an approach that can utilize large amounts of web data for learning a deep salient object detection model. With thousands of images collected from the Web, we first employ several bottom-up saliency detection techniques to generate salient object masks for all images, and then use a novel quality evaluation method to pick out a subset of images with reliable masks for training. After that, we develop a self-training approach to boost the performance of our initial network, which iterates between the network training process and the training set updating process. Importantly, different from existing webly-supervised or weakly-supervised methods, our approach is able to automatically select reliable images for network training without requiring any human intervention (e.g., dividing images into different difficulty levels). Results of extensive experiments on several widely-used benchmarks demonstrate that our method has achieved state-of-the-art performance. It significantly outperforms existing unsupervised and weakly-supervised salient object detection methods, and achieves competitive or even better performance than fully supervised approaches. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] To Be Critical: Self-calibrated Weakly Supervised Learning for Salient Object Detection
    Wang, Jian
    Liu, Tingwei
    Zhang, Miao
    Piao, Yongri
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XI, 2024, 14435 : 184 - 198
  • [22] Salient Object Detection Based on Deep Residual Networks and Edge Supervised Learning
    Shi Feifei
    Zhang Songlong
    Peng Li
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (15)
  • [23] AUGMENTED SEMI-SUPERVISED LEARNING FOR SALIENT OBJECT DETECTION WITH EDGE COMPUTING
    Yu, Chengjin
    Zhang, Yanping
    Mukherjee, Mithun
    Lloret, Jaime
    IEEE WIRELESS COMMUNICATIONS, 2022, 29 (03) : 109 - 114
  • [24] A Weakly Supervised Learning Framework for Salient Object Detection via Hybrid Labels
    Cong, Runmin
    Qin, Qi
    Zhang, Chen
    Jiang, Qiuping
    Wang, Shiqi
    Zhao, Yao
    Kwong, Sam
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (02) : 534 - 548
  • [25] Noise-Sensitive Adversarial Learning for Weakly Supervised Salient Object Detection
    Piao, Yongri
    Wu, Wei
    Zhang, Miao
    Jiang, Yongyao
    Lu, Huchuan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 2888 - 2897
  • [26] Webly Supervised Learning of Convolutional Networks
    Chen, Xinlei
    Gupta, Abhinav
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1431 - 1439
  • [27] Supervised contrastive learning with multi-scale interaction and integrity learning for salient object detection
    Bi, Yu
    Chen, Zhenxue
    Liu, Chengyun
    Liang, Tian
    Zheng, Fei
    MACHINE VISION AND APPLICATIONS, 2024, 35 (04)
  • [28] Deeply Supervised Salient Object Detection with Short Connections
    Hou, Qibin
    Cheng, Ming-Ming
    Hu, Xiaowei
    Borji, Ali
    Tu, Zhuowen
    Torr, Philip
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5300 - 5309
  • [29] SSFam: Scribble Supervised Salient Object Detection Family
    Liu, Zhengyi
    Deng, Sheng
    Wang, Xinrui
    Wang, Linbo
    Fang, Xianyong
    Tang, Bin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 1988 - 2000
  • [30] Supervised training and contextually guided salient object detection
    Du, Mengnan
    Wu, Xingming
    Chen, Weihai
    Li, Zhengguo
    DIGITAL SIGNAL PROCESSING, 2017, 63 : 44 - 55