A Bayesian parametric approach to the retrieval of the atmospheric number size distribution from lidar data

被引:12
|
作者
Sorrentino, Alberto [1 ]
Sannino, Alessia [2 ]
Spinelli, Nicola [2 ]
Piana, Michele [1 ]
Boselli, Antonella [3 ]
Tontodonato, Valentino [5 ]
Castellano, Pasquale [5 ]
Wang, Xuan [4 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Genoa, Italy
[2] Univ Napoli Federico II, Dipartimento Fis, Naples, Italy
[3] CNR IMAA, Potenza, Italy
[4] CNR SPIN, Naples, Italy
[5] ALA Srl Adv Lidar Applicat, Naples, Italy
关键词
AEROSOL MICROPHYSICAL PROPERTIES; MULTIWAVELENGTH RAMAN LIDAR; ELASTIC-BACKSCATTER LIDAR; OPTICAL-PROPERTIES; PARTICLE PARAMETERS; INVERSION; EXTINCTION; REGULARIZATION; PROFILES; ALGORITHM;
D O I
10.5194/amt-15-149-2022
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We consider the problem of reconstructing the number size distribution (or particle size distribution) in the atmosphere from lidar measurements of the extinction and backscattering coefficients. We assume that the number size distribution can be modeled as a superposition of log-normal distributions, each one defined by three parameters: mode, width and height. We use a Bayesian model and a Monte Carlo algorithm to estimate these parameters. We test the developed method on synthetic data generated by distributions containing one or two modes and perturbed by Gaussian noise as well as on three datasets obtained from AERONET. We show that the proposed algorithm provides good results when the right number of modes is selected. In general, an overestimate of the number of modes provides better results than an underestimate. In all cases, the PM1, PM2.5 and PM10 concentrations are reconstructed with tolerable deviations.
引用
收藏
页码:149 / 164
页数:16
相关论文
共 50 条
  • [21] NUMBER CONCENTRATION AND SIZE DISTRIBUTION OF ATMOSPHERIC AEROSOL IN SIBERIA
    KOUTSENOGII, PK
    JAENICKE, R
    JOURNAL OF AEROSOL SCIENCE, 1994, 25 (02) : 377 - 383
  • [22] Application of a regularization technique to the retrieval of the tropospheric aerosol size distribution from the results of multiwavelength lidar
    Kim, DY
    Cha, HK
    Veselovskii, I
    Choi, SC
    Kim, Y
    Lee, J
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2001, 39 (05) : 842 - 847
  • [23] Towards Dictionaries of Optimal Size: A Bayesian Non Parametric Approach
    Hong Phuong Dang
    Pierre Chainais
    Journal of Signal Processing Systems, 2018, 90 : 221 - 232
  • [24] Towards Dictionaries of Optimal Size: A Bayesian Non Parametric Approach
    Hong Phuong Dang
    Chainais, Pierre
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2018, 90 (02): : 221 - 232
  • [25] A non-parametric Bayesian approach to decompounding from high frequency data
    Gugushvili S.
    van der Meulen F.
    Spreij P.
    Statistical Inference for Stochastic Processes, 2018, 21 (1) : 53 - 79
  • [26] Expectation maximization and the retrieval of the atmospheric extinction coefficients by inversion of Raman lidar data
    Garbarino, Sara
    Sorrentino, Alberto
    Massone, Anna Maria
    Sannino, Alessia
    Boselli, Antonella
    Wang, Xuan
    Spinelli, Nicola
    Piana, Michele
    OPTICS EXPRESS, 2016, 24 (19): : 21497 - 21511
  • [27] Retrieval of spheroid particle size distribution from spectral extinction data in the independent mode using PCA approach
    Tang, Hong
    Lin, Jian-Zhong
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2013, 115 : 78 - 92
  • [28] Bayesian Approach for Predicting Soil-Water Characteristic Curve from Particle-Size Distribution Data
    Wang, Lin
    Zhang, Wengang
    Chen, Fuyong
    ENERGIES, 2019, 12 (15)
  • [29] RAPID CALCULATION OF SIZE PARAMETERS FROM MICROSCOPE SIZE-NUMBER-DISTRIBUTION DATA
    GURUSWAMY, S
    INDIAN JOURNAL OF TECHNOLOGY, 1964, 2 (06): : 211 - &
  • [30] Parallel software for retrieval of aerosol distribution from LIDAR data in the framework of EARLINET-ASOS
    Osterloh, Lukas
    Perez, Carlos
    Boehme, David
    Maria Baldasano, Jose
    Boeckmann, Christine
    Schneidenbach, Lars
    Vicente, David
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) : 2095 - 2102