Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate

被引:27
|
作者
Huang, Zhao [1 ]
Nooeaid, Patcharakamon [2 ]
Kohl, Benjamin [1 ]
Roether, Judith A. [3 ]
Schubert, Dirk W. [3 ]
Meier, Carola [1 ]
Boccaccini, Aldo R. [2 ]
Godkin, Owen [1 ]
Ertel, Wolfgang [1 ]
Arens, Stephan [1 ]
Schulze-Tanzil, Gundula [1 ,4 ]
机构
[1] Charite, Dept Orthopaed Trauma & Reconstruct Surg, D-13353 Berlin, Germany
[2] Univ Erlangen Nurnberg, Inst Biomat, Dept Mat Sci & Engn, Erlangen, Germany
[3] Univ Erlangen Nurnberg, Inst Polymer Mat, Dept Mat Sci & Engn, Erlangen, Germany
[4] Paracelsus Med Univ, Inst Anat, Nurnberg, Germany
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2015年 / 50卷
关键词
Chondrogenesis; Alginate-foam scaffolds; Chondrocytes; Mesenchymal stromal cells; Chondroitin sulfate; ARTICULAR-CARTILAGE LESIONS; IN-VITRO CHONDROGENESIS; PLATELET-RICH PLASMA; ADULT STEM-CELLS; PORE-SIZE; TISSUE; SCAFFOLDS; KNEE; DIFFERENTIATION; CHONDROCYTES;
D O I
10.1016/j.msec.2015.01.082
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1-2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity similar to 93-95% with a mean pore sizes of 237 +/- 48 mu m (Alg) and 197 +/- 61 mu m (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell-cell contacts. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:160 / 172
页数:13
相关论文
共 50 条
  • [21] Establishment of a Cytocompatible Cell-Free Intervertebral Disc Matrix for Chondrogenesis with Human Bone Marrow-Derived Mesenchymal Stromal Cells
    Huang, Zhao
    Kohl, Benjamin
    Kokozidou, Maria
    Arens, Stephan
    Schulze-Tanzil, Gundula
    CELLS TISSUES ORGANS, 2015, 201 (05) : 354 - 365
  • [22] Chondrogenesis of Rat Bone Marrow Stromal Cells in Transforming Growth Factor-β1 Loaded Alginate Bead in In Vivo
    Kim, Soon Hee
    Jang, Ji Wook
    Jung, Su Hyun
    Choi, Jin Hee
    Ha, Hyun Jung
    Rhee, John M.
    Kang, Young Sun
    Khang, Gilson
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2008, 5 (4-6) : 650 - 659
  • [23] Assessment of DNA Damage in Human Bone Marrow Cells and Multipotent Mesenchymal Stromal Cells
    Nikitina, V. A.
    Chausheva, A. I.
    Zhanataev, A. K.
    Osipova, E. Yu.
    Durnev, A. D.
    Bochkov, N. P.
    BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2011, 151 (04) : 550 - 552
  • [24] Assessment of DNA Damage in Human Bone Marrow Cells and Multipotent Mesenchymal Stromal Cells
    V. A. Nikitina
    A. I. Chausheva
    A. K. Zhanataev
    E. Yu. Osipova
    A. D. Durnev
    N. P. Bochkov
    Bulletin of Experimental Biology and Medicine, 2011, 151 : 550 - 552
  • [25] Ultrastructural analysis of human bone marrow mesenchymal stem cells during in vitro osteogenesis and chondrogenesis
    Teti, Gabriella
    Cavallo, Carola
    Grigolo, Brunella
    Giannini, Sandro
    Facchini, Andrea
    Mazzotti, Antonio
    Falconi, Mirella
    MICROSCOPY RESEARCH AND TECHNIQUE, 2012, 75 (05) : 596 - 604
  • [26] Study of Genetic Stability of Human Bone Marrow Multipotent Mesenchymal Stromal Cells
    V. A. Nikitina
    E. Yu. Osipova
    L. D. Katosova
    S. A. Rumyantsev
    E. V. Skorobogatova
    T. V. Shamanskaya
    N. P. Bochkov
    Bulletin of Experimental Biology and Medicine, 2011, 150 : 627 - 631
  • [27] Proliferative Potential of Multipotent Mesenchymal Stromal Cells from Human Bone Marrow
    Zhironkina, O. A.
    Shipounova, I. N.
    Bigildeev, A. E.
    Sats, N. V.
    Petinati, N. A.
    Drize, N. I.
    BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2012, 152 (04) : 543 - 547
  • [28] Proliferative Potential of Multipotent Mesenchymal Stromal Cells from Human Bone Marrow
    O. A. Zhironkina
    I. N. Shipounova
    A. E. Bigildeev
    N. V. Sats
    N. A. Petinati
    N. I. Drize
    Bulletin of Experimental Biology and Medicine, 2012, 152 : 543 - 547
  • [29] Immunogenic potential of human bone marrow mesenchymal stromal cells is enhanced by hyperthermia
    Mcclain-Caldwell, Ian
    Vitale-Cross, Lynn
    Mayer, Balazs
    Krepuska, Miklos
    Boyajian, Michael
    Myneni, Vamsee
    Martin, Daniel
    Nemeth, Krisztian
    Mezey, Eva
    CYTOTHERAPY, 2018, 20 (12) : 1437 - 1444
  • [30] QUANTITATIVE PROTEOMIC ANALYSIS OF HUMAN BONE MARROW MESENCHYMAL STEM CELLS SECRETOME DURING CHONDROGENESIS
    Rocha, B.
    Calamia, V.
    Casas, V.
    Lourido, L.
    Fernandez, C.
    Mateos, J.
    Fernandez-Puente, P.
    Carrascal, M.
    Blanco, F. J.
    Ruiz-Romero, C.
    OSTEOARTHRITIS AND CARTILAGE, 2013, 21 : S270 - S271