Bifurcations in reaction-diffusion systems in chaotic flows

被引:12
|
作者
Menon, SN [1 ]
Gottwald, GA [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词
D O I
10.1103/PhysRevE.71.066201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the behavior of reacting tracers in a chaotic flow. In particular, we look at an autocatalytic reaction and at a bistable system which are subjected to stirring by a chaotic flow. The impact of the chaotic advection is described by a one-dimensional phenomenological model. We use a nonperturbative technique to describe the behavior near a saddle node bifurcation. We also find an approximation of the solution far away from the bifurcation point. The results are confirmed by numerical simulations and show good agreement.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction-diffusion systems
    Owolabi, Kolade M.
    Atangana, Abdon
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 2166 - 2189
  • [32] Resilience in reaction-diffusion systems
    van Vuuren, JH
    IMA JOURNAL OF APPLIED MATHEMATICS, 1999, 63 (02) : 179 - 197
  • [33] Multispecies reaction-diffusion systems
    Aghamohammadi, A
    Fatollahi, AH
    Khorrami, M
    Shariati, A
    PHYSICAL REVIEW E, 2000, 62 (04): : 4642 - 4649
  • [34] SEGREGATION IN REACTION-DIFFUSION SYSTEMS
    TAITELBAUM, H
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1993, 200 (1-4) : 155 - 164
  • [35] STOCHASTIC FLOWS, REACTION-DIFFUSION PROCESSES, AND MORPHOGENESIS
    KOZAK, JJ
    HATLEE, MD
    MUSHO, MK
    POLITOWICZ, PA
    WALSH, CA
    JOURNAL OF STATISTICAL PHYSICS, 1983, 30 (02) : 263 - 271
  • [36] REPELLERS IN REACTION-DIFFUSION SYSTEMS
    HUTSON, V
    MORAN, W
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1987, 17 (02) : 301 - 314
  • [37] Reaction-diffusion front speed enhancement by flows
    Zlatos, Andrej
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (05): : 711 - 726
  • [38] Symmetry-breaking bifurcations in a delayed reaction-diffusion equation
    Qu, Xiaowei
    Guo, Shangjiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [39] Steady State Bifurcations of The Reaction-Diffusion System for Gene Propagation
    Li, Limei
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 629 - 632
  • [40] Reaction-diffusion models of growing plant tips: Bifurcations on hemispheres
    Nagata, W
    Harrison, LG
    Wehner, S
    BULLETIN OF MATHEMATICAL BIOLOGY, 2003, 65 (04) : 571 - 607