Optimal recovery using thin plate splines in finite volume methods for the numerical solution of hyperbolic conservation laws

被引:23
|
作者
Sonar, T
机构
[1] Inst. fur Stromungsmechanik, DLR Göttingen, D-37073 Göttingen
关键词
D O I
10.1093/imanum/16.4.549
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The theory of optimal recovery is applied to finite volume methods for the numerical solution of conservation laws in multiple space dimensions. Classical polynomial ENO (essentially non-oscillatory) algorithms can be interpreted as trivial recovery operators for the point functional in the light of this theory. Thin plate splines are identified as optimal recovery functions in Beppo-Levi spaces and can be seen as multi-dimensional analogues of cubic splines. Recovery algorithms of ENO-type based on thin plate splines are developed and applied to test problems including the Euler equations of compressible gas dynamics.
引用
收藏
页码:549 / 581
页数:33
相关论文
共 50 条
  • [31] Finite volume method with characteristic flux for solving hyperbolic systems of conservation laws
    Ghidaglia, JM
    Kumbaro, A
    LeCoq, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (10): : 981 - 988
  • [32] Hyperbolic conservation laws on manifolds. An error estimate for finite volume schemes
    LeFloch, Philippe G.
    Okutmustur, Baver
    Neves, Wladimir
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (07) : 1041 - 1066
  • [33] Hyperbolic conservation laws on manifolds. An error estimate for finite volume schemes
    Philippe G. LeFloch
    Baver Okutmustur
    Wladimir Neves
    Acta Mathematica Sinica, English Series, 2009, 25 : 1041 - 1066
  • [34] An adaptive viscosity regularization approach for the numerical solution of conservation laws: Application to finite element methods
    Nguyen, Ngoc Cuong
    Vila-Perez, Jordi
    Peraire, Jaime
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 494
  • [35] Analysis of a class of spectral volume methods for linear scalar hyperbolic conservation laws
    Lu, Jianfang
    Jiang, Yan
    Shu, Chi-Wang
    Zhang, Mengping
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (06)
  • [36] Finite-difference methods for one-dimensional hyperbolic conservation laws
    Berkenbosch, A.C.
    Kaasschieter, E.F.
    ten Thije Boonkkamp, J.H.M.
    Numerical Methods for Partial Differential Equations, 1994, 10 (02) : 225 - 269
  • [37] Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws
    Hartmann, R
    Houston, P
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (03): : 979 - 1004
  • [38] NUMERICAL VISCOSITY AND CONVERGENCE OF FINITE-VOLUME METHODS FOR CONSERVATION-LAWS WITH BOUNDARY-CONDITIONS
    BENHARBIT, S
    CHALABI, A
    VILA, JP
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) : 775 - 796
  • [39] A Speed-Up Strategy for Finite Volume WENO Schemes for Hyperbolic Conservation Laws
    Teng, Fei
    Yuan, Li
    Tang, Tao
    JOURNAL OF SCIENTIFIC COMPUTING, 2011, 46 (03) : 359 - 378
  • [40] A Speed-Up Strategy for Finite Volume WENO Schemes for Hyperbolic Conservation Laws
    Fei Teng
    Li Yuan
    Tao Tang
    Journal of Scientific Computing, 2011, 46 : 359 - 378