The zero-Hopf bifurcations of a four-dimensional hyperchaotic system

被引:4
|
作者
Llibre, Jaume [1 ]
Tian, Yuzhou [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, Spain
[2] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Peoples R China
基金
中国国家自然科学基金; 欧盟地平线“2020”;
关键词
LORENZ SYSTEM; PROJECTIVE SYNCHRONIZATION; GLOBAL DYNAMICS;
D O I
10.1063/5.0023155
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the four-dimensional hyperchaotic system (x)over dot=a(y-x), (y)ovedr dot=bx+u-y-xz, (z)over dot=xy-cz, and u?=-du-jx+exz, where a, b, c, d, j, and e are real parameters. This system extends the famous Lorenz system to four dimensions and was introduced in Zhou et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, 1750021 (2017). We characterize the values of the parameters for which their equilibrium points are zero-Hopf points. Using the averaging theory, we obtain sufficient conditions for the existence of periodic orbits bifurcating from these zero-Hopf equilibria and give some examples to illustrate the conclusions. Moreover, the stability conditions of these periodic orbits are given using the Routh-Hurwitz criterion. Published under license by AIP Publishing.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Speech Encryption Based on Four-Dimensional Hyperchaotic System
    Farsana, F. J.
    Gopakumar, K.
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON DATA MINING AND ADVANCED COMPUTING (SAPIENCE), 2016, : 279 - 283
  • [32] The generation and analysis of a new four-dimensional hyperchaotic system
    Wang, Jiezhi
    Chen, Zengqiang
    Yuan, Zhuzhi
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (06): : 1013 - 1024
  • [33] Local bifurcation analysis of a four-dimensional hyperchaotic system
    吴文娟
    陈增强
    袁著祉
    ChinesePhysicsB, 2008, 17 (07) : 2420 - 2432
  • [34] HOPF AND ZERO-HOPF BIFURCATIONS FOR A CLASS OF CUBIC KOLMOGOROV SYSTEMS IN R3
    Lu, Jingping
    Wang, Chunyong
    Huang, Wentao
    Wang, Qinlong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (01): : 354 - 372
  • [35] Hopf Bifurcation, Positively Invariant Set, and Physical Realization of a New Four-Dimensional Hyperchaotic Financial System
    Kai, G.
    Zhang, W.
    Wei, Z. C.
    Wang, J. F.
    Akgul, A.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [36] Zero-Hopf Bifurcation
    Liebscher, Stefan
    BIFURCATION WITHOUT PARAMETERS, 2015, 2117 : 103 - 108
  • [37] A four-dimensional hyperchaotic spiking neuron
    Takahashi, Y
    Nakano, H
    Saito, T
    ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 358 - 362
  • [38] Integrability and zero-Hopf bifurcation in the Sprott A system
    Barreira, Luis
    Llibre, Jaume
    Valls, Claudia
    BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 162
  • [39] GLOBAL DYNAMICS AND BIFURCATIONS IN A FOUR-DIMENSIONAL REPLICATOR SYSTEM
    Wang, Yuashi
    Wu, Hong
    Ruan, Shigui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (01): : 259 - 271
  • [40] Zero-Hopf bifurcation in the generalized Michelson system
    Llibre, Jaume
    Makhlouf, Amar
    CHAOS SOLITONS & FRACTALS, 2016, 89 : 228 - 231