Efficient Indexing of Necklaces and Irreducible Polynomials over Finite Fields

被引:0
|
作者
Kopparty, Swastik [1 ,2 ]
Kumar, Mrinal [1 ]
Saks, Michael [2 ]
机构
[1] Rutgers State Univ, Dept Comp Sci, Piscataway, NJ 08855 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08855 USA
基金
美国国家科学基金会;
关键词
GENERATING NECKLACES; LYNDON WORDS; ALGORITHM; COLORS; BEADS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the problem of indexing necklaces, and give the first polynomial time algorithm for this problem. Specifically, we give a poly(n, log vertical bar Sigma vertical bar)-time computable bijection between {1,..., vertical bar N vertical bar} and the set N of all necklaces of length n over a finite alphabet Sigma. Our main application is to give an explicit indexing of all irreducible polynomials of degree n over the finite field F-q in time poly(n, log q) (with n log q bits of advice). This has applications in pseudorandomness, and answers an open question of Alon, Goldreich, Haastad and Peralta [2].
引用
收藏
页码:726 / 737
页数:12
相关论文
共 50 条