An application of supersymmetric quantum mechanics to a planar physical system

被引:13
|
作者
Rodrigues, RD
Bezerra, VB [1 ]
Vaidya, AN
机构
[1] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, Paraiba, Brazil
[2] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[3] Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil
[4] Univ Fed Paraiba, Dept Ciencias Exatas & Nat, BR-58900000 Cajazerias, PB, Brazil
关键词
D O I
10.1016/S0375-9601(01)00450-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Supersymmetry (SUSY) in non-relativistic quantum mechanics (QM) is applied to a two-dimensional physical system: a neutron in an external magnetic field. The superpotential and the two-component wave functions of the ground state are found out. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:45 / 49
页数:5
相关论文
共 50 条
  • [21] Supersymmetric Quantum Mechanics and Paraquantization
    Morchedi, O.
    Mebarki, N.
    8TH INTERNATIONAL CONFERENCE ON PROGRESS IN THEORETICAL PHYSICS (ICPTP 2011), 2012, 1444 : 304 - 309
  • [22] Progress in supersymmetric quantum mechanics
    Aref'eva, I
    Fernández, DJ
    Hussin, V
    Negro, J
    Nieto, LM
    Samsonov, BF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (43):
  • [23] Duality and supersymmetric quantum mechanics
    Simon, DS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (18): : 4143 - 4150
  • [24] Can quantum mechanics and supersymmetric quantum mechanics be the multidimensional Ermakov theories?
    Kaushal, RS
    Parashar, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (04): : 889 - 893
  • [25] 40 years of supersymmetric quantum mechanics
    Junker, Georg
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (02)
  • [26] Supersymmetric Quantum Mechanics and Solvable Models
    Bougie, Jonathan
    Gangopadhyaya, Asim
    Mallow, Jeffry
    Rasinariu, Constantin
    SYMMETRY-BASEL, 2012, 4 (03): : 452 - 473
  • [27] Painleve Equations and Supersymmetric Quantum mechanics
    Fernandez, David J. C.
    GEOMETRIC METHODS IN PHYSICS, 2016, : 213 - 231
  • [28] Is supersymmetric quantum mechanics compatible with duality?
    Capdequi-Peyranère, M
    MODERN PHYSICS LETTERS A, 1999, 14 (38) : 2657 - 2666
  • [29] On supersymmetric quantum mechanics in curved spaces
    Debergh, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (21): : 7427 - 7436
  • [30] A REVIEW OF SUPERSYMMETRIC QUANTUM-MECHANICS
    FREEDMAN, B
    COOPER, F
    PHYSICA D, 1985, 15 (1-2): : 138 - 146