Ideal structure and simplicity of the C*-algebras generated by Hilbert bimodules

被引:87
|
作者
Kajiwara, T
Pinzari, C
Watatani, Y
机构
[1] Okayama Univ, Dept Environm & Math Sci, Tsushima 700, Japan
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[3] Kyushu Univ, Grad Sch Math, Fukuoka 810, Japan
关键词
D O I
10.1006/jfan.1998.3306
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Pimsner introduced the C*-algebra O-x generated by a Hilbert bimodule X over a Ci-algebra sl. We look for additional conditions that X should satisfy in order to study the simplicity and, more generally, the ideal structure of when X is finite projective. We introduce two conditions, "(I)-freeness" and "(II)-freeness," stronger than the former, in analogy with J. Cuntz and W. Krieger (Invent. Math. 56, 1980, 251-268) and J. Cuntz (Invent. Math. 63, 1981, 25-40), respectively. (I)-freeness comprehends the case of the bimodules associated with an inclusion of simple C*-algebras with finite index, real or pseudoreal bimodules with finite intrinsic dimension, and the case of "Cuntz-Krieger bimodules." If X satisfies this condition the C*-algebra O-x does not depend on the choice of the generators when A is Faithfully represented. As a consequence, if X is ill-free and A is X-simple, then O-x is simple. In the case of Cuntz-Krieger algebras O-A, X-simplicity corresponds to the irreducibility of the matrix A. If A is simple and p.i. then O-x is p.i.; if A is non nuclear then O-x is nonnuclear. Thus we provide many examples of (purely) infinite nonnuclear simple C*-algebras. Furthermore if X is (II)-free, we determine the ideal structure of O-x. (C) 1998 Academic Press.
引用
收藏
页码:295 / 322
页数:28
相关论文
共 50 条
  • [11] MULTIPLIERS OF HILBERT PRO-C*-BIMODULES AND CROSSED PRODUCTS BY HILBERT PRO-C*-BIMODULES
    Joita, Maria
    Munteanu, Radu-B.
    Zarakas, Ioannis
    OPERATORS AND MATRICES, 2015, 9 (04): : 925 - 942
  • [12] Hilbert C*-bimodules over commutative C*-algebras and an isomorphism condition for quantum Heisenberg manifolds
    Abadie, B
    Exel, R
    REVIEWS IN MATHEMATICAL PHYSICS, 1997, 9 (04) : 411 - 423
  • [13] An Ideal of Hilbert Algebras in BCK-Algebras
    Zhang Qiuna
    Li Dongmei
    Chen Weili
    Yang Aimin
    Feng Lichao
    PROCEEDINGS OF 2009 CONFERENCE ON COMMUNICATION FACULTY, 2009, : 310 - +
  • [14] ON APPROXIMATION PROPERTIES OF PIMSNER ALGEBRAS AND CROSSED PRODUCTS BY HILBERT BIMODULES
    Skalski, Adam
    Zacharias, Joachim
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (02) : 609 - 625
  • [15] On Hilbert algebras generated by the order
    Castiglioni, J. L.
    Celani, S. A.
    San Martin, H. J.
    ARCHIVE FOR MATHEMATICAL LOGIC, 2022, 61 (1-2) : 155 - 172
  • [16] On Hilbert algebras generated by the order
    J. L. Castiglioni
    S. A. Celani
    H. J. San Martín
    Archive for Mathematical Logic, 2022, 61 : 155 - 172
  • [17] HILBERT PRO-C*-BIMODULES AND APPLICATIONS
    Zarakas, I.
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 57 (03): : 289 - 310
  • [18] On infinite tensor products of Hilbert C*-bimodules
    Bergmann, WR
    Conti, R
    OPERATOR ALGEBRAS AND MATHEMATICAL PHYSICS, CONFERENCE PROCEEDINGS, 2003, : 23 - 34
  • [19] Continuous crossed product of Hilbert C*-bimodules
    Kajiwara, T
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (07) : 969 - 981
  • [20] Fuzzy Ideal of Hilbert Algebras in BCK-algebras
    Zhang, Qiuna
    Jin, Dianchuan
    Jiang, Junna
    INTELLIGENT STRUCTURE AND VIBRATION CONTROL, PTS 1 AND 2, 2011, 50-51 : 498 - +