Responses of soil microbial communities to freeze-thaw cycles in a Chinese temperate forest

被引:32
|
作者
Sang, Changpeng [1 ,2 ]
Xia, Zongwei [1 ,3 ]
Sun, Lifei [1 ]
Sun, Hao [1 ]
Jiang, Ping [1 ]
Wang, Chao [1 ]
Bai, Edith [4 ,5 ]
机构
[1] Chinese Acad Sci, Inst Appl Ecol, CAS Key Lab Forest Ecol & Management, Shenyang 110016, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Linyi Univ, Coll Resources & Environm, Shandong Prov Key Lab Water & Soil Conservat & En, Linyi 276000, Shandong, Peoples R China
[4] Northeast Normal Univ, Sch Geog Sci, Key Lab Geog Proc & Ecol Secur Changbai Mt, Minist Educ, Changchun 130024, Peoples R China
[5] Minist Educ, Key Lab Vegetat Ecol, Changchun 130024, Peoples R China
基金
中国国家自然科学基金;
关键词
Freeze-thaw cycle; Microbial diversity; Microbial community composition; Soil resource availability; Functional potential; EXTRACELLULAR ENZYME-ACTIVITY; BACTERIAL COMMUNITIES; ECOENZYMATIC STOICHIOMETRY; NITROGEN-FERTILIZATION; NUTRIENT ACQUISITION; EXTRACTION METHOD; ORGANIC-MATTER; LATE WINTER; CARBON; BIOMASS;
D O I
10.1186/s13717-021-00337-x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Background Freeze-thaw events are common in boreal and temperate forest ecosystems and are increasingly influenced by climate warming. Soil microorganisms play an important role in maintaining ecosystem stability, but their responses to freeze-thaw cycles (FTCs) are poorly understood. We conducted a field freeze-thaw experiment in a natural Korean pine and broadleaf mixed forest in the Changbai Mountain Nature Reserve, China, to determine the dynamic responses of soil microbial communities to FTCs. Results Bacteria were more sensitive than fungi to FTCs. Fungal biomass, diversity and community composition were not significantly affected by freeze-thaw regardless of the stage. Moderate initial freeze-thaw resulted in increased bacterial biomass, diversity, and copiotrophic taxa abundance. Subsequent FTCs reduced the bacterial biomass and diversity. Compared with the initial FTC, subsequent FTCs exerted an opposite effect on the direction of change in the composition and function of the bacterial community. Soil water content, dissolved organic carbon, ammonium nitrogen, and total dissolved phosphorus were important factors determining bacterial community diversity and composition during FTCs. Moreover, the functional potentials of the microbial community involved in C and N cycling were also affected by FTCs. Conclusions Different stages of FTCs have different ecological effects on the soil environment and microbial activities. Soil FTCs changed the soil nutrients and water availability and then mainly influenced bacterial community composition, diversity, and functional potentials, which may disturb C and N states in this temperate forest soil. This study also improves our understanding of microbial communities regulating their ecological functions in response to climate change.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Effects of successive soil freeze-thaw cycles on soil microbial biomass and organic matter decomposition potential of soils
    Yanai, Y
    Toyota, K
    Okazaki, M
    SOIL SCIENCE AND PLANT NUTRITION, 2004, 50 (06) : 821 - 829
  • [42] Responses of feldspathic sandstone and sand-reconstituted soil C and N to freeze-thaw cycles
    Zhang, Haiou
    Yang, Chenxi
    Wu, Xueying
    Guo, Zhen
    Wang, Yingguo
    OPEN CHEMISTRY, 2023, 21 (01):
  • [43] Responses of Soil Active Organic Carbon Fractions and Enzyme Activities to Freeze-thaw Cycles in Wetlands
    Jinqiu Guan
    Chunxiang Song
    Yude Wu
    Xingtian Qi
    Rongjun Qu
    Fu Li
    Hongwei Ni
    Wetlands, 2022, 42
  • [44] Effects of nitrogen addition on greenhouse gas fluxes during continuous freeze-thaw cycles in a cold temperate forest
    Wang, Shijia
    Guo, Yafen
    Cui, Xiaoyang
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (38) : 88406 - 88416
  • [45] Responses of Soil Active Organic Carbon Fractions and Enzyme Activities to Freeze-thaw Cycles in Wetlands
    Guan, Jinqiu
    Song, Chunxiang
    Wu, Yude
    Qi, Xingtian
    Qu, Rongjun
    Li, Fu
    Ni, Hongwei
    WETLANDS, 2022, 42 (05)
  • [46] Intraspecific variation in response to magnitude and frequency of freeze-thaw cycles in a temperate grass
    Dietrich, Charlotte C.
    Kreyling, Juergen
    Jentsch, Anke
    Malyshev, Andrey V.
    AOB PLANTS, 2018, 10 (01):
  • [47] REPEATED FREEZE-THAW CYCLES IN CRYOSURGERY
    GILL, W
    FRASER, J
    CARTER, DC
    NATURE, 1968, 219 (5152) : 410 - &
  • [48] The Impact of Freeze-Thaw Cycles on Epinephrine
    Beasley, Heather
    Ng, Pear Lly
    Wheeler, Albert
    Smith, William R.
    McIntosh, Scott E.
    WILDERNESS & ENVIRONMENTAL MEDICINE, 2015, 26 (04) : 514 - 519
  • [49] Effects of biochar and compost on the abundant and rare microbial communities assembly and multifunctionality in pesticide-contaminated soil under freeze-thaw cycles
    Shi, Guoxin
    Li, Heng
    Fu, Qiang
    Li, Tianxiao
    Hou, Renjie
    Chen, Qingshan
    Xue, Ping
    ENVIRONMENTAL POLLUTION, 2024, 362
  • [50] The effects of freeze-thaw cycles at different initial soil water contents on soil erodibility in Chinese Mollisol region
    Wang, Lei
    Zuo, Xiaofeng
    Zheng, Fenli
    Wilson, Glenn, V
    Zhang, Xunchang J.
    Wang, Yifei
    Fu, Han
    CATENA, 2020, 193