Top 10 algorithms in data mining

被引:3473
|
作者
Wu, Xindong [1 ]
Kumar, Vipin [2 ]
Quinlan, J. Ross [3 ]
Ghosh, Joydeep [4 ]
Yang, Qiang [5 ]
Motoda, Hiroshi [6 ]
McLachlan, Geoffrey J. [7 ]
Ng, Angus [8 ]
Liu, Bing [9 ]
Yu, Philip S. [10 ]
Zhou, Zhi-Hua [11 ]
Steinbach, Michael [12 ]
Hand, David J. [13 ]
Steinberg, Dan [14 ]
机构
[1] Univ Vermont, Dept Comp Sci, Burlington, VT USA
[2] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN USA
[3] Rulequest Res pty Ltd, St Ives, NSW, Australia
[4] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
[5] Hong Kong Univ Sci & Technol, Dept Comp Sci, Hong Kong, Peoples R China
[6] Osaka Univ, AFORS AOARD, Tokyo 10600326, Japan
[7] Univ Queensland, Dept Math, Brisbane, Qld, Australia
[8] Griffith Univ, Sch Med, Brisbane, Qld, Australia
[9] Univ Illinois, Dept Comp Sci, Chicago, IL 60607 USA
[10] IBM TJ Watson Res Ctr, Hawthorne, NY 10532 USA
[11] Nanjing Univ, Natl Key Lab Novel Software Technol, Nanjing 210008, Peoples R China
[12] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
[13] Imperial Coll, Dept Math, London, England
[14] Maxwell Labs Inc, Salford Syst, San Diego, CA 92123 USA
关键词
D O I
10.1007/s10115-007-0114-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the top 10 data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) in December 2006: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. These top 10 algorithms are among the most influential data mining algorithms in the research community. With each algorithm, we provide a description of the algorithm, discuss the impact of the algorithm, and review current and further research on the algorithm. These 10 algorithms cover classification, clustering, statistical learning, association analysis, and link mining, which are all among the most important topics in data mining research and development.
引用
收藏
页码:1 / 37
页数:37
相关论文
共 50 条
  • [21] Supervised Evaluation of Top-k Itemset Mining Algorithms
    Lucchese, Claudio
    Orlando, Salvatore
    Perego, Raffaele
    BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY, 2015, 9263 : 82 - 94
  • [22] Fuzzy MapReduce Data Mining algorithms
    Reddy, Poli Venkata Subba
    2018 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY), 2018, : 304 - 309
  • [23] Techniques of Cluster Algorithms in Data Mining
    Johannes Grabmeier
    Andreas Rudolph
    Data Mining and Knowledge Discovery, 2002, 6 : 303 - 360
  • [24] Algorithms for Data Mining and Machine Learning
    Schulz, Volker H.
    SIAM REVIEW, 2020, 62 (03) : 739 - 739
  • [25] Hybrid Biclustering Algorithms for Data Mining
    Orzechowski, Patryk
    Boryczko, Krzysztof
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2016, PT I, 2016, 9597 : 156 - 168
  • [26] DATA MINING CLASSIFICATION ALGORITHMS: A SURVEY
    Mohamed, Saouabi
    Abdellah, Ezzati
    INTERNATIONAL JOURNAL OF SECURITY AND ITS APPLICATIONS, 2021, 15 (01): : 45 - 50
  • [27] Data mining classification algorithms: An overview
    Bardab, Saeed Ngmaldin
    Ahmed, Tarig Mohamed
    Mohammed, Tarig Abdalkarim Abdalfadil
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2021, 8 (02): : 1 - 5
  • [28] On approximation algorithms for data mining applications
    Afrati, FN
    EFFICIENT APPROXIMATION AND ONLINE ALGORITHMS: RECENT PROGRESS ON CLASSICAL COMBINATORIAL OPTIMIZATION PROBLEMS AND NEW APPLICATIONS, 2006, 3484 : 1 - 29
  • [29] A Survey on Data Mining Classification Algorithms
    Umadevi, S.
    Marseline, K. S. Jeen
    PROCEEDINGS OF 2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION (ICSPC'17), 2017, : 264 - 268
  • [30] ALGORITHMS OF ASSOCIATION AS A METHOD OF DATA MINING
    Racic, Zeljko
    Strazivuk, Tamara
    SOR'13 PROCEEDINGS: THE 12TH INTERNATIONAL SYMPOSIUM ON OPERATIONAL RESEARCH IN SLOVENIA, 2013, : 251 - 256