Fluorocarbon-Based Selective-Superwetting Nanofibrous Membranes with Ultraviolet-Driven Switchable Wettability for Oil-Water Separation

被引:12
|
作者
Huo, Tianwei [1 ]
Li, Feiran [1 ]
Jiang, Keda [1 ]
Kong, Wenting [1 ]
Zhao, Xuezeng [1 ]
Hao, Zhuang [1 ]
Pan, Yunlu [1 ]
机构
[1] Harbin Inst Technol, Sch Mechatron Engn, Key Lab Microsyst & Microstruct Mfg, Minist Educ, R China, Harbin 150001, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
superhydrophobic; switchable wettability; oil-water separation; ultraviolet-driven; electrospinning; UNDERWATER SUPEROLEOPHOBICITY; RESPONSIVE WETTABILITY; SUPERHYDROPHILICITY; SUPERHYDROPHOBICITY; FABRICATION; TRANSITION; MIXTURES;
D O I
10.1021/acsanm.2c02809
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Selective-superwetting membranes possess control-lable wettability and have great potential in the oil-water (OW) separation field. The electrospinning technique has advantages in fabricating nanofibrous materials with distinguishing features such as high porosity and large surface area. However, in recent years, there have been a few studies on preparing photoinduced superwetting membranes by electrospinning. In this study, an ultraviolet-driven selective-superwetting nanofibrous membrane was prepared by electrospinning poly(vinylidene fluoride)-cohexa-fluoropropylene (PVDF-HFP) blended with fluorinated TiO2 nanoparticles. The wetting behavior of the membrane can be tuned between superhydrophobic/superoleophilic and super-hydrophilic/underwater superoleophobic by two processes, ultra-violet (UV) irradiation, and heating, during which the water contact angle (WCA) fluctuates rapidly from 170 to 0 degrees and back to 160 degrees. The reliability of the controllable wettability was proven by a 15-cycle conversion test, and the nanofibrous membrane remained superhydrophobic thereafter. Our results have promising multipurpose applications as an effective and flexible solution to more complex oil-water mixtures in wastewater abatement.
引用
收藏
页码:13018 / 13026
页数:9
相关论文
共 50 条
  • [21] Switchable Wettability Surface with Chemical Stability and Antifouling Properties for Controllable Oil-Water Separation
    Gao, Hanpeng
    Liu, Yan
    Wang, Guoyong
    Li, Shuyi
    Han, Zhiwu
    Ren, Luquan
    LANGMUIR, 2019, 35 (13) : 4498 - 4508
  • [22] Superhydrophobic copper coating: Switchable wettability, on-demand oil-water separation, and antifouling
    Yang, Wenwen
    Li, Jing
    Zhou, Ping
    Zhu, Lihua
    Tang, Heqing
    CHEMICAL ENGINEERING JOURNAL, 2017, 327 : 849 - 854
  • [23] Hierarchically structured superhydrophobic and superoleophilic nanofibrous membranes for effective oil-water separation
    Wang, Fei
    Huang, Liqian
    Ding, Bin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [24] Development of superhydrophobic PVA/CNC nanofibrous membranes for enhanced oil-water separation
    Bang, Junsik
    Jung, Seungoh
    Kim, Jungkyu
    Park, Sangwoo
    Yun, Heecheol
    Hahm, Jiyeon
    Won, Sungwook
    Kwak, Hyo Won
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [25] Core-sheath structured electrospun nanofibrous membranes for oil-water separation
    Ma, Wenjing
    Zhang, Qilu
    Samal, Sangram Keshari
    Wang, Fang
    Gao, Buhong
    Pan, Hui
    Xu, Haijun
    Yao, Jianfeng
    Zhan, Xianxu
    De Smedt, Stefaan C.
    Huang, Chaobo
    RSC ADVANCES, 2016, 6 (48): : 41861 - 41870
  • [26] Graphene-bentonite supported free-standing, flexible membrane with switchable wettability for selective oil-water separation
    Dhumal, Pratik S.
    Khose, Rahul, V
    Wadekar, Pravin H.
    Lokhande, Kshama D.
    Some, Surajit
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 266
  • [27] Gravity driven separation of emulsified oil-water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes
    Huang, Meiling
    Si, Yang
    Tang, Xiaomin
    Zhu, Zhigao
    Ding, Bin
    Liu, Lifang
    Zheng, Gang
    Luo, Wenjing
    Yu, Jianyong
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (45) : 14071 - 14074
  • [28] Solar-driven pH-responsive oil-water separation membranes for effective oil-water emulsion separation
    Li, Ting-Ting
    Jia, Mengdan
    Li, Shuxia
    Zhang, Ying
    Wang, Xiaomeng
    Chu, Sheng
    Shiu, Bing-Chiuan
    Lou, Ching-Wen
    Lin, Jia-Horng
    NEW JOURNAL OF CHEMISTRY, 2024, 48 (21) : 9549 - 9558
  • [29] Preparation of composite fiber membranes with asymmetric wettability and oil-water separation performance
    Yang, Shuo
    Zhao, Pengju
    Cheng, Chunzu
    Li, Chenyang
    Cheng, Bowen
    Fangzhi Xuebao/Journal of Textile Research, 2024, 45 (08): : 10 - 17
  • [30] Research progress on wettability of hydrophobic-oleophylic membranes in oil-water separation
    Liu, Xiaozhen
    Zhang, Tai
    Xiao, Changfa
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39 (11): : 4516 - 4528