Maximum principles and gradient Ricci solitons

被引:18
|
作者
Fernandez-Lopez, Manuel [1 ]
Garcia-Rio, Eduardo [1 ]
机构
[1] Univ Santiago de Compostela, Fac Math, Santiago De Compostela 15782, Spain
关键词
Gradient Ricci soliton; Omori-Yau maximum principle; Stochastically completeness; f-Laplacian;
D O I
10.1016/j.jde.2011.03.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the Omori-Yau maximum principle holds true on complete gradient shrinking Ricci solitons both for the Laplacian and the f-Laplacian. As an application, curvature estimates and rigidity results for shrinking Ricci solitons are obtained. Furthermore, applications of maximum principles are also given in the steady and expanding situations. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:73 / 81
页数:9
相关论文
共 50 条
  • [21] RICCI SOLITONS AND GRADIENT RICCI SOLITONS IN AN LP-SASAKIAN MANIFOLD
    Mondal, Abul Kalam
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2014, 29 (02): : 145 - 153
  • [22] Ricci Almost Solitons And Gradient Ricci Almost Solitons In (k, μ)-Paracontact Geometry
    De, U. C.
    Mandal, krishanu
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2019, 37 (03): : 119 - 130
  • [23] η-RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON δ- LORENTZIAN TRANS-SASAKIAN MANIFOLDS
    Siddiqi, Mohd Danish
    Akyol, Mehmet Akif
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (03): : 529 - 545
  • [24] ON A CLASS OF FINSLER GRADIENT RICCI SOLITONS
    Mo, Xiaohuan
    Zhu, Hongmei
    Zhu, Ling
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 1763 - 1773
  • [25] On Gradient Solitons of the Ricci–Harmonic Flow
    Hong Xin GUO
    Robert PHILIPOWSKI
    Anton THALMAIER
    ActaMathematicaSinica, 2015, 31 (11) : 1798 - 1804
  • [26] On gradient solitons of the Ricci–Harmonic flow
    Hong Xin Guo
    Robert Philipowski
    Anton Thalmaier
    Acta Mathematica Sinica, English Series, 2015, 31 : 1798 - 1804
  • [27] The Weyl tensor of gradient Ricci solitons
    Cao, Xiaodong
    Tran, Hung
    GEOMETRY & TOPOLOGY, 2016, 20 (01) : 389 - 436
  • [28] RIGIDITY OF GRADIENT ALMOST RICCI SOLITONS
    Barros, A.
    Batista, R.
    Ribeiro, E., Jr.
    ILLINOIS JOURNAL OF MATHEMATICS, 2012, 56 (04) : 1267 - 1279
  • [29] On Gradient Solitons of the Ricci–Harmonic Flow
    Hong Xin GUO
    Robert PHILIPOWSKI
    Anton THALMAIER
    Acta Mathematica Sinica,English Series, 2015, (11) : 1798 - 1804
  • [30] RIGIDITY OF GRADIENT SHRINKING RICCI SOLITONS
    Yang, Fei
    Zhang, Liangdi
    ASIAN JOURNAL OF MATHEMATICS, 2020, 24 (04) : 533 - 547