Two-Dimensional Vanadium Carbide (MXene) as Positive Electrode for Sodium-Ion Capacitors

被引:380
|
作者
Dall'Agnese, Yohan [1 ,2 ,3 ,4 ]
Taberna, Pierre-Louis [1 ,2 ]
Gogotsi, Yury [3 ,4 ]
Simon, Patrice [1 ,2 ]
机构
[1] Univ Toulouse 3, CIRIMAT, CNRS, UMR 5085, F-31062 Toulouse, France
[2] CNRS, FR 3459, RS2E, F-80039 Amiens, France
[3] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[4] Drexel Univ, AJ Drexel Nanomat Inst, Philadelphia, PA 19104 USA
来源
基金
欧洲研究理事会;
关键词
ENERGY-STORAGE; SURFACE-STRUCTURE; TITANIUM CARBIDE; HARD CARBON; SUPERCAPACITOR; INTERCALATION; BATTERY; PERFORMANCE; ANODES;
D O I
10.1021/acs.jpclett.5b00868
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ion capacitors store energy through intercalation of cations into an electrode at a faster rate than in batteries and within a larger potential window. These devices reach a higher energy density compared to electrochemical double layer capacitor. Li-ion capacitors are already produced commercially, but the development of Na-ion capacitors is hindered by lack of materials that would allow fast intercalation of Na-ions. Here we investigated the electrochemical behavior of 2D vanadium carbide, V2C, from the MXene family. We investigated the mechanism of Na intercalation by XRD and achieved capacitance of similar to 100 F/g at 0.2 mV/s. We assembled a full cell with hard carbon as negative electrode, a known anode material for Na ion batteries, and achieved capacity of 50 mAh/g with a maximum cell voltage of 3.5 V.
引用
收藏
页码:2305 / 2309
页数:5
相关论文
共 50 条
  • [21] Two-Dimensional Vanadium Carbide MXene for Gas Sensors with Ultrahigh Sensitivity Toward Nonpolar Gases
    Lee, Eunji
    VahidMohammadi, Armin
    Yoon, Young Soo
    Beidaghi, Majid
    Kim, Dong-Joo
    ACS SENSORS, 2019, 4 (06): : 1603 - 1611
  • [22] Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors
    Xianfen Wang
    Satoshi Kajiyama
    Hiroki Iinuma
    Eiji Hosono
    Shinji Oro
    Isamu Moriguchi
    Masashi Okubo
    Atsuo Yamada
    Nature Communications, 6
  • [23] First-principles realistic prediction of gas adsorption on two-dimensional Vanadium Carbide (MXene)
    Salami, Nadia
    APPLIED SURFACE SCIENCE, 2022, 581
  • [24] Intercalation and delamination of two-dimensional MXene (Ti3C2Tx) and application in sodium-ion batteries
    Lv, Guoxia
    Wang, Jing
    Shi, Zhiqiang
    Fan, Liping
    MATERIALS LETTERS, 2018, 219 : 45 - 50
  • [25] Two-dimensional silicether: A promising anode material for sodium-ion battery
    Zhao, Rui
    Ye, Xiao-Juan
    Liu, Chun-Sheng
    COMPUTATIONAL MATERIALS SCIENCE, 2023, 218
  • [26] Synthesis and lithium ion storage performance of novel two dimensional vanadium niobium carbide (VNbCTx) MXene
    Cheng, Yan
    Yang, Liying
    Yin, Shougen
    COMPOSITES COMMUNICATIONS, 2023, 40
  • [27] Two-Dimensional Vanadium Carbide (MXene) as a High-Capacity Cathode Material for Rechargeable Aluminum Batteries
    VahidMohammadi, Armin
    Hadjikhani, Ali
    Shahbazmohamadi, Sina
    Beidaghi, Majid
    ACS NANO, 2017, 11 (11) : 11135 - 11144
  • [28] Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors
    Luo, Jianmin
    Fang, Cong
    Jin, Chengbin
    Yuan, Huadong
    Sheng, Ouwei
    Fang, Ruyi
    Zhang, Wenkui
    Huang, Hui
    Gan, Yongping
    Xia, Yang
    Liang, Chu
    Zhang, Jun
    Li, Weiyang
    Tao, Xinyong
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (17) : 7794 - 7806
  • [29] Pre-Sodiated Ti3C2Tx MXene Structure and Behavior as Electrode for Sodium-Ion Capacitors
    Brady, Alexander
    Liang, Kun
    Van Quan Vuong
    Sacci, Robert
    Prenger, Kaitlyn
    Thompson, Matt
    Matsumoto, Ray
    Cummings, Peter
    Irle, Stephan
    Wang, Hsiu-Wen
    Naguib, Michael
    ACS NANO, 2021, 15 (02) : 2994 - 3003
  • [30] Ultrafast Na-Ion Storage in Amorphization Engineered Hollow Vanadium Oxide/MXene Nanohybrids for High-Performance Sodium-Ion Hybrid Capacitors
    Yuan, Jun
    Pan, Duo
    Chen, Junxiang
    Liu, Yangjie
    Yu, Jiaqi
    Hu, Xiang
    Zhan, Hongbing
    Wen, Zhenhai
    ADVANCED MATERIALS, 2024, 36 (50)