Genetic algorithms for multiobjective controller design

被引:0
|
作者
Martínez, MA [1 ]
Sanchis, J [1 ]
Blasco, X [1 ]
机构
[1] Univ Politecn Valencia, Dept Syst Engn & Control, Predict Control & Heurist Optimizat Grp, E-46071 Valencia, Spain
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiobjective optimization strategy so-called Physical Programming allows controller designers a flexible way to express design preferences with a 'physical' sense. For each objective (settling time, overshoot, disturbance rejection, etc.) preferences are established through categories as desirable, tolerable, unacceptable, etc. assigned to numerical ranges. The problem is translated into a unique objective optimization but normally as a multimodal problem. This work shows how to convert a robust control design problem into a multiobjective optimization problem and to solve it by Physical Programming and Genetic Algorithms. An application to the American Control Conference (ACC) Robust Control Benchmark is presented and compared with other known solutions.
引用
收藏
页码:242 / 251
页数:10
相关论文
共 50 条
  • [21] Design rules of a fuzzy controller using genetic algorithms
    Perdukova, Daniela
    Fedor, Pavol
    PROCEEDINGS OF THE 7TH INTERNATIONAL SCIENTIFIC SYMPOSIUM ON ELECTRICAL POWER ENGINEERING (ELEKTROENERGETIKA 2013), 2013, : 513 - 516
  • [22] Autonomous motion controller design using Genetic Algorithms
    Itoh, K
    Iwasaki, M
    Matsui, N
    CONFERENCE RECORD OF THE 2001 IEEE INDUSTRY APPLICATIONS CONFERENCE, VOLS 1-4, 2001, : 915 - 920
  • [23] Genetic Algorithms for Satellite Launcher Attitude Controller Design
    Silva, Paulo R.
    Abreu, Ivanildo S.
    Forte, Paulo A.
    do Amaral, Henrique M. C.
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE, 2019, 22 (63): : 150 - 161
  • [24] Design of optimum fuzzy controller using genetic algorithms
    Eksin, I
    Erol, OK
    MELECON '96 - 8TH MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, PROCEEDINGS, VOLS I-III: INDUSTRIAL APPLICATIONS IN POWER SYSTEMS, COMPUTER SCIENCE AND TELECOMMUNICATIONS, 1996, : 186 - 190
  • [25] Design of optimal fuzzy logic controller with genetic algorithms
    Rekik, C
    Djemel, M
    Derbel, N
    Alimi, A
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 2002, : 98 - 103
  • [26] Design of a robust controller using genetic algorithms and LMI design method
    Lee M.
    Lee H.K.
    Journal of Institute of Control, Robotics and Systems, 2011, 17 (07) : 619 - 624
  • [27] Unsatisfying functions and multiobjective fuzzy satisficing design using genetic algorithms
    Kiyota, T
    Tsuji, Y
    Kondo, E
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2003, 33 (06): : 889 - 897
  • [28] Immune network simulation with multiobjective genetic algorithms for multidisciplinary design optimization
    Kurapati, A
    Azarm, S
    ENGINEERING OPTIMIZATION, 2000, 33 (02) : 245 - 260
  • [29] Design of PID-type controllers using multiobjective genetic algorithms
    Herreros, A
    Baeyens, E
    Perán, JR
    ISA TRANSACTIONS, 2002, 41 (04) : 457 - 472
  • [30] Design of discrete-time control systems by multiobjective genetic algorithms
    Liu, TK
    Ishihara, T
    Inooka, H
    PROCEEDINGS OF THE 1996 IEEE IECON - 22ND INTERNATIONAL CONFERENCE ON INDUSTRIAL ELECTRONICS, CONTROL, AND INSTRUMENTATION, VOLS 1-3, 1996, : 1618 - 1623