Uniform Holder exponent of a stationary increments Gaussian process: Estimation starting from average values

被引:2
|
作者
Peng, Qidi [1 ]
机构
[1] Univ Lille 1, Lab Paul Painleve, UMR 8524, CNRS, F-59655 Villeneuve Dascq, France
关键词
Gaussian processes; Holder exponents; Generalized increments; Quadratic variations; Central Limit Theorems; MULTIFRACTIONAL BROWNIAN-MOTION; IDENTIFICATION;
D O I
10.1016/j.spl.2011.03.036
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {X(t)}(t is an element of R) be a stationary increments Gaussian process satisfying some assumptions. By using the notion of generalized quadratic variation we build a strongly consistent and asymptotically normal estimator of the uniform Holder exponent of X, over a compact interval. Our estimator is obtained starting from average values of the process over a regular grid. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1326 / 1335
页数:10
相关论文
共 50 条
  • [41] Non-parametric warping via local scale estimation for non-stationary Gaussian process modelling
    Marmin, Sebastien
    Baccou, Jean
    Liandrat, Jacques
    Ginsbourger, David
    WAVELETS AND SPARSITY XVII, 2017, 10394
  • [42] Robust Estimation of Gaussian Copula Causal Structure from Mixed Data with Missing Values
    Cui, Ruifei
    Groot, Perry
    Heskes, Tom
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2017, : 835 - 840
  • [43] Auto-regressive moving average parameter estimation for 1/f process under colored Gaussian noise background
    Wang, Chen
    Shi, Yao-Wu
    Zhu, Lan-Xiang
    Deng, Li-Fei
    Shi, Yi-Ran
    Wang, De-Min
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2019, 13 : 1 - 10
  • [44] ESTIMATION OF MEAN AND CORRELATION-FUNCTION OF A STATIONARY PROCESS FROM DISCRETE DATA
    RYZHOV, YM
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1971, 16 (02): : 367 - &
  • [45] A new frequency domain method for random fatigue life estimation in a wide-band stationary Gaussian random process
    Han, Qinghua
    Li, Jia
    Xu, Jie
    Ye, Fei
    Carpinteri, Alberto
    Lacidogna, Giuseppe
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2019, 42 (01) : 97 - 113
  • [46] EXPLICIT ESTIMATION OF DERIVATIVES FROM DATA AND DIFFERENTIAL EQUATIONS BY GAUSSIAN PROCESS REGRESSION
    Wang, Hongqiao
    Zhou, Xiang
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2021, 11 (04) : 41 - 57
  • [47] MAP-BASED ESTIMATION OF THE PARAMETERS OF NON-STATIONARY GAUSSIAN PROCESSES FROM NOISY OBSERVATIONS
    Krueger, Alexander
    Haeb-Umbach, Reinhold
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 3596 - 3599
  • [48] ESTIMATION OF THE DIFFUSE SOLAR IRRADIATION FROM GLOBAL SOLAR IRRADIATION - DAILY AND MONTHLY AVERAGE DAILY VALUES
    MARTINEZLOZANO, JA
    UTRILLAS, MP
    GOMEZ, V
    RENEWABLE ENERGY, 1994, 4 (01) : 95 - 100
  • [49] LIMIT DISTRIBUTIONS FOR DEVIATION OF ZERO OF 1 STATIONARY GAUSSIAN PROCESS FROM ZERO OF ANOTHER SUCH PROCESS WHICH IS STATIONARILY CONNECTED WITH FORMER
    GOLDIN, SV
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1965, 10 (01): : 164 - &
  • [50] Estimation of diffusion coefficients from voltammetric signals by support vector and gaussian process regression
    Martin Bogdan
    Dominik Brugger
    Wolfgang Rosenstiel
    Bernd Speiser
    Journal of Cheminformatics, 6