α3-Integrins are required for hippocampal long-term potentiation and working memory

被引:47
|
作者
Chan, Chi-Shing
Levenson, Jonathan M.
Mukhopadhyay, Partha S.
Zong, Lin
Bradley, Allan
Sweatt, J. David
Davis, Ronald L. [1 ]
机构
[1] Baylor Coll Med, Dept Mol & Cellular Biol, Houston, TX 77030 USA
[2] Baylor Coll Med, Dept Neurosci, Houston, TX 77030 USA
[3] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
[4] Baylor Coll Med, Menninger Dept Psychiat & Behav Sci, Houston, TX 77030 USA
[5] Univ Wisconsin, Sch Med & Publ Hlth, Dept Pharmacol, Madison, WI 53706 USA
[6] Univ Wisconsin, Sch Med & Publ Hlth, Waisman Ctr, Madison, WI 53706 USA
关键词
D O I
10.1101/lm.648607
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Integrins comprise a large family of heterodimeric, transmembrane cell adhesion receptors that mediate diverse neuronal functions in the developing and adult CNS. Recent pharmacological and genetic studies have suggested that beta 1-integrins are critical in synaptic plasticity and memory formation. To further define the role of integrins in these processes, we generated a postnatal forebrain and excitatory neuron-specific knockout of alpha 3-integrin, one of several binding partners for beta 1 subunit. At hippocampal Schaffer collateral-CA1 synapses, deletion of alpha 3-integrin resulted in impaired long-term potentiation (LTP). Basal synaptic transmission and paired-pulse facilitation were normal in the absence of alpha 3-integrin. Behavioral studies demonstrated that the mutant mice were selectively defective in a hippocampus-dependent, nonmatch-to-place working memory task, but were normal in other hippocampus-dependent spatial tasks. The impairment in LTP and working memory is similar to that observed in alpha 1-integrin conditional knockout mice, suggesting that alpha 3-integrin is the functional binding partner for beta 1 for these processes in the forebrain.
引用
收藏
页码:606 / 615
页数:10
相关论文
共 50 条
  • [41] LONG-TERM POTENTIATION AND DEPRESSION IN HIPPOCAMPAL SLICES
    POCKETT, S
    LIPPOLD, OCJ
    EXPERIMENTAL NEUROLOGY, 1986, 91 (03) : 481 - 487
  • [42] POSTSYNAPTIC CONTROL OF HIPPOCAMPAL LONG-TERM POTENTIATION
    WIGSTROM, H
    GUSTAFSSON, B
    JOURNAL DE PHYSIOLOGIE, 1986, 81 (04): : 228 - 236
  • [43] Long-term potentiation in cultured hippocampal neurons
    Molnar, Elek
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2011, 22 (05) : 506 - 513
  • [44] EFFECTS OF GLUCOCORTICOIDS ON HIPPOCAMPAL LONG-TERM POTENTIATION
    PAVLIDES, C
    WATANABE, Y
    MCEWEN, BS
    HIPPOCAMPUS, 1993, 3 (02) : 183 - 192
  • [45] LONG-TERM POTENTIATION - STUDIES IN THE HIPPOCAMPAL SLICE
    SARVEY, JM
    BURGARD, EC
    DECKER, G
    JOURNAL OF NEUROSCIENCE METHODS, 1989, 28 (1-2) : 109 - 124
  • [46] Gene expression in hippocampal long-term potentiation
    Dudek, SM
    Fields, RD
    NEUROSCIENTIST, 1999, 5 (05): : 275 - 279
  • [47] THE NATURE AND CAUSES OF HIPPOCAMPAL LONG-TERM POTENTIATION
    LYNCH, G
    KESSLER, M
    ARAI, A
    LARSON, J
    PROGRESS IN BRAIN RESEARCH, 1990, 83 : 233 - 250
  • [48] Transgenic Overexpression of the Type I Isoform of Neuregulin 1 Affects Working Memory and Hippocampal Oscillations but not Long-term Potentiation
    Deakin, Inga H.
    Nissen, Wiebke
    Law, Amanda J.
    Lane, Tracy
    Kanso, Riam
    Schwab, Markus H.
    Nave, Klaus-Armin
    Lamsa, Karri P.
    Paulsen, Ole
    Bannerman, David M.
    Harrison, Paul J.
    CEREBRAL CORTEX, 2012, 22 (07) : 1520 - 1529
  • [49] The hippocampus, long-term potentiation and memory
    Redman, S
    PROCEEDINGS OF THE AUSTRALIAN PHYSIOLOGICAL AND PHARMACOLOGICAL SOCIETY, VOL 27, NO 1, APRIL, 1996, 1996, 27 (01): : 118 - 123
  • [50] LONG-TERM POTENTIATION AND THE MECHANISMS OF MEMORY
    IZQUIERDO, I
    DRUG DEVELOPMENT RESEARCH, 1993, 30 (01) : 1 - 17